論文の概要: Latent Variable Method Demonstrator -- Software for Understanding
Multivariate Data Analytics Algorithms
- arxiv url: http://arxiv.org/abs/2205.08132v1
- Date: Tue, 17 May 2022 07:02:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 13:31:44.103081
- Title: Latent Variable Method Demonstrator -- Software for Understanding
Multivariate Data Analytics Algorithms
- Title(参考訳): latent variable method demonstrator -- 多変量データ解析アルゴリズムを理解するためのソフトウェア
- Authors: Joachim Schaeffer and Richard Braatz
- Abstract要約: この記事では、潜在変数の教え、学習、理解のためのインタラクティブソフトウェア、Latent Variable Demonstrator(LAVADE)について説明する。
ユーザは、Partial Least Squares(PLS)やPrincipal Component Regression(PCR)といった遅延変数メソッドと他の回帰メソッドをインタラクティブに比較することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ever-increasing quantity of multivariate process data is driving a need
for skilled engineers to analyze, interpret, and build models from such data.
Multivariate data analytics relies heavily on linear algebra, optimization, and
statistics and can be challenging for students to understand given that most
curricula do not have strong coverage in the latter three topics. This article
describes interactive software -- the Latent Variable Demonstrator (LAVADE) --
for teaching, learning, and understanding latent variable methods. In this
software, users can interactively compare latent variable methods such as
Partial Least Squares (PLS), and Principal Component Regression (PCR) with
other regression methods such as Least Absolute Shrinkage and Selection
Operator (lasso), Ridge Regression (RR), and Elastic Net (EN). LAVADE helps to
build intuition on choosing appropriate methods, hyperparameter tuning, and
model coefficient interpretation, fostering a conceptual understanding of the
algorithms' differences. The software contains a data generation method and
three chemical process datasets, allowing for comparing results of datasets
with different levels of complexity. LAVADE is released as open-source software
so that others can apply and advance the tool for use in teaching or research.
- Abstract(参考訳): 多変量プロセスデータの増加は、熟練したエンジニアがそのようなデータからモデルを分析し、解釈し、構築する必要性を増している。
多変量データ分析は線形代数、最適化、統計に大きく依存しており、ほとんどのカリキュラムが後3つのトピックに強いカバレッジを持っていないため、学生には理解が困難である。
本稿では,潜在変数デモンストレータ(latent variable demonstrator,lavade)による,潜在変数メソッドの指導,学習,理解のためのインタラクティブソフトウェアについて述べる。
本ソフトウェアでは,PLS (Partial Least Squares) やプリンシパルコンポーネント回帰 (Principal Component Regression, PCR) などの潜伏変数メソッドと,Least Absolute Shrinkage and Selection Operator (lasso), Ridge Regression (RR), Elastic Net (EN) などの回帰手法を対話的に比較することができる。
LAVADEは、適切な方法、ハイパーパラメータチューニング、モデル係数解釈の選択に関する直観の構築を支援し、アルゴリズムの違いの概念的理解を促進する。
このソフトウェアは、データ生成方法と3つの化学プロセスデータセットを含み、異なる複雑さのレベルとデータセットの結果を比較することができる。
LAVADEはオープンソースソフトウェアとしてリリースされており、他の人が教育や研究に使用するツールを応用し前進させることができる。
関連論文リスト
- Multi-Task Learning with Summary Statistics [4.871473117968554]
様々な情報源からの要約統計を利用した柔軟なマルチタスク学習フレームワークを提案する。
また,Lepskiの手法の変種に基づく適応パラメータ選択手法を提案する。
この研究は、さまざまな領域にわたる関連するモデルをトレーニングするための、より柔軟なツールを提供する。
論文 参考訳(メタデータ) (2023-07-05T15:55:23Z) - Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective [77.53142165205281]
線形回帰モデルに変数間の変換や相互作用を手動で追加することで、非線形解が必ずしも改善されないことを示す。
データ駆動モデルを構築する前にこれを認識する方法や、そのような分析が本質的に解釈可能な回帰モデルへの移行にどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2022-11-21T17:48:44Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Safe Active Learning for Multi-Output Gaussian Processes [6.0803541683577444]
本稿では,多出力ガウス過程回帰に対する安全な能動学習手法を提案する。
このアプローチは、回帰器と安全性の制約を考慮に入れた最も情報性の高いデータや出力をクエリする。
論文 参考訳(メタデータ) (2022-03-28T15:41:48Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
データ拡張ポリシーの学習方法は、保持データを必要とし、二段階最適化の問題に基づいている。
我々のアプローチは、現代の自動データ拡張技術よりも訓練が簡単で高速であることを示す。
論文 参考訳(メタデータ) (2022-02-04T14:12:31Z) - Learning Time-Varying Graphs from Online Data [39.21234914444073]
本研究では,オンラインデータから時間変化グラフを学習するアルゴリズムフレームワークを提案する。
モデルに依存しない、すなわち抽象的な定式化において理論的に解析することができる。
フレームワークを3つのよく知られたグラフ学習モデル、すなわちガウス図形モデル(GGM)、構造方程式モデル(SEM)、滑らか性に基づくモデル(SBM)に特化する。
論文 参考訳(メタデータ) (2021-10-21T09:46:44Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
ガウス過程(GP)は、大きなデータセット、カテゴリ入力、および複数の応答を調節するのに困難である。
本稿では,変分推論によって得られた潜伏変数と関数を用いて,上記の課題を同時に解決するGPモデルを提案する。
本手法は三元系酸化物材料の機械学習と多スケール対応機構のトポロジー最適化に有用である。
論文 参考訳(メタデータ) (2021-06-26T02:17:23Z) - Enhancing ensemble learning and transfer learning in multimodal data
analysis by adaptive dimensionality reduction [10.646114896709717]
マルチモーダルデータ分析では、すべての観測が同じレベルの信頼性や情報品質を示すわけではない。
この問題を克服するために,次元削減のための適応的アプローチを提案する。
多様な研究分野で得られたマルチモーダルデータセットのアプローチをテストします。
論文 参考訳(メタデータ) (2021-05-08T11:53:12Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。