論文の概要: Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective
- arxiv url: http://arxiv.org/abs/2211.11680v1
- Date: Mon, 21 Nov 2022 17:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 18:35:34.686646
- Title: Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective
- Title(参考訳): 科学のための効果的な機械学習モデルの構築:多分野的な視点
- Authors: Alice E. A. Allen, Alexandre Tkatchenko
- Abstract要約: 線形回帰モデルに変数間の変換や相互作用を手動で追加することで、非線形解が必ずしも改善されないことを示す。
データ駆動モデルを構築する前にこれを認識する方法や、そのような分析が本質的に解釈可能な回帰モデルへの移行にどのように役立つかについて議論する。
- 参考スコア(独自算出の注目度): 77.53142165205281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from data has led to substantial advances in a multitude of
disciplines, including text and multimedia search, speech recognition, and
autonomous-vehicle navigation. Can machine learning enable similar leaps in the
natural and social sciences? This is certainly the expectation in many
scientific fields and recent years have seen a plethora of applications of
non-linear models to a wide range of datasets. However, flexible non-linear
solutions will not always improve upon manually adding transforms and
interactions between variables to linear regression models. We discuss how to
recognize this before constructing a data-driven model and how such analysis
can help us move to intrinsically interpretable regression models. Furthermore,
for a variety of applications in the natural and social sciences we demonstrate
why improvements may be seen with more complex regression models and why they
may not.
- Abstract(参考訳): データからの学習は、テキストやマルチメディア検索、音声認識、自動運転車のナビゲーションなど、数多くの分野において大きな進歩をもたらした。
機械学習は自然科学と社会科学で同様の飛躍を可能にするか?
これは多くの科学分野で期待されていることであり、近年は幅広いデータセットに対する非線形モデルの適用が多々見られる。
しかし、フレキシブルな非線形解は、線形回帰モデルに変換と変数間の相互作用を手動で加えることで常に改善するとは限らない。
データ駆動モデルを構築する前にこれを認識する方法や、そのような分析が本質的に解釈可能な回帰モデルへの移行にどのように役立つかについて議論する。
さらに、自然科学や社会科学における様々な応用について、なぜより複雑な回帰モデルで改善が見られるのか、なぜそうでないのかを示す。
関連論文リスト
- Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains [114.76612918465948]
大規模言語モデル(LLM)は近年顕著なパフォーマンスを達成しているが、基礎となるトレーニングデータによって根本的に制限されている。
本稿では,言語モデルのマルチエージェント社会にファインタニングを適用した自己改善への補完的アプローチを提案する。
論文 参考訳(メタデータ) (2025-01-10T04:35:46Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - A spectrum of physics-informed Gaussian processes for regression in
engineering [0.0]
センサとデータ全般の可用性は向上していますが、純粋なデータ駆動アプローチから多くのサービス内エンジニアリングシステムや構造を完全に特徴づけることはできません。
本稿では、限られたデータで予測モデルを作成する能力を高めるために、機械学習技術と物理に基づく推論の組み合わせを追求する。
論文 参考訳(メタデータ) (2023-09-19T14:39:03Z) - Interpreting and generalizing deep learning in physics-based problems with functional linear models [1.1440052544554358]
解釈可能性は非常に重要であり、物理システムのモデリングにしばしば望まれる。
固体力学,流体力学,輸送の試験例を報告する。
本研究は,科学機械学習における解釈可能な表現の重要性を浮き彫りにする。
論文 参考訳(メタデータ) (2023-07-10T14:01:29Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - LocalGLMnet: interpretable deep learning for tabular data [0.0]
一般化線形モデルと類似した特徴を共用する新しいネットワークアーキテクチャを提案する。
我々のアプローチは、シェープリー値と積分勾配の精神を加法的に分解する。
論文 参考訳(メタデータ) (2021-07-23T07:38:33Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Flexible Bayesian Nonlinear Model Configuration [10.865434331546126]
線形あるいは単純なパラメトリックモデルはしばしば入力変数と応答の間の複雑な関係を記述するのに十分ではない。
高いフレキシブルな非線形パラメトリック回帰モデルの構築と選択に柔軟なアプローチを導入する。
遺伝的に修飾されたモードジャンプチェーンモンテカルロアルゴリズムを用いてベイズ推論を行う。
論文 参考訳(メタデータ) (2020-03-05T21:20:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。