論文の概要: Active learning of causal probability trees
- arxiv url: http://arxiv.org/abs/2205.08178v1
- Date: Tue, 17 May 2022 08:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 21:13:53.043216
- Title: Active learning of causal probability trees
- Title(参考訳): 因果確率木の能動的学習
- Authors: Tue Herlau
- Abstract要約: 干渉データと観測データを組み合わせて確率木を学習する手法を提案する。
この方法は、介入から期待される情報ゲインを定量化し、最大のゲインで介入を選択する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The past two decades have seen a growing interest in combining causal
information, commonly represented using causal graphs, with machine learning
models. Probability trees provide a simple yet powerful alternative
representation of causal information. They enable both computation of
intervention and counterfactuals, and are strictly more general, since they
allow context-dependent causal dependencies. Here we present a Bayesian method
for learning probability trees from a combination of interventional and
observational data. The method quantifies the expected information gain from an
intervention, and selects the interventions with the largest gain. We
demonstrate the efficiency of the method on simulated and real data. An
effective method for learning probability trees on a limited interventional
budget will greatly expand their applicability.
- Abstract(参考訳): 過去20年間、因果関係情報(一般的に因果関係グラフを使って表現される)と機械学習モデルを組み合わせることへの関心が高まってきた。
確率木は因果情報の単純かつ強力な代替表現を提供する。
介入と反ファクトの両方の計算を可能にし、コンテキスト依存の因果依存性を許容するため、厳密にはより一般的である。
本稿では,介入データと観測データの組み合わせから確率木を学ぶベイズ法を提案する。
この方法は、介入による期待情報ゲインを定量化し、最大のゲインを有する介入を選択する。
シミュレーションおよび実データに対して,本手法の有効性を示す。
限られた介入予算で確率木を学習する効果的な方法は、適用可能性を大幅に拡大する。
関連論文リスト
- Graph-based Complexity for Causal Effect by Empirical Plug-in [56.14597641617531]
本稿では、因果効果クエリに対する経験的プラグイン推定の計算複雑性に焦点を当てる。
計算は、推定値のハイパーグラフに依存するため、データサイズにおいて、潜在的に線形な時間で効率的に行うことができることを示す。
論文 参考訳(メタデータ) (2024-11-15T07:42:01Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Distilling interpretable causal trees from causal forests [0.0]
条件平均処理効果の高次元分布は、正確な個々のレベルの推定を与える可能性がある。
本論文は, 原生林から1本, 解釈可能な因果樹を蒸留する方法である, 希釈因果樹を提案する。
論文 参考訳(メタデータ) (2024-08-02T05:48:15Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - A Meta-Reinforcement Learning Algorithm for Causal Discovery [3.4806267677524896]
因果構造は、モデルが純粋な相関に基づく推論を超えることを可能にする。
データから因果構造を見つけることは、計算の労力と精度の両方において大きな課題となる。
我々は,介入を学習することで因果発見を行うメタ強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-18T09:26:07Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Probability trees and the value of a single intervention [0.0]
我々は、単一の介入からの情報ゲインを定量化し、介入する前に期待される情報ゲインと介入から期待されるゲインの両方が単純な表現を持つことを示す。
これにより、期待される最も高い利得に対する介入を簡単に選択できるアクティブラーニング手法が実現される。
論文 参考訳(メタデータ) (2022-05-18T08:01:33Z) - To do or not to do: finding causal relations in smart homes [2.064612766965483]
本稿では,環境と観測データの混合実験から因果モデルを学ぶための新しい手法を提案する。
我々の手法の核心は、選択された介入の使用であり、特に、介入が不可能な変数を考慮に入れた学習である。
本手法をスマートホームシミュレーション,すなわち因果関係を知ることが説明可能なシステムへの道を開くユースケースに応用する。
論文 参考訳(メタデータ) (2021-05-20T22:36:04Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Handling Missing Data in Decision Trees: A Probabilistic Approach [41.259097100704324]
確率論的アプローチを採り、決定木で欠落したデータを扱う問題に対処する。
我々は, トラクタブル密度推定器を用いて, モデルの「予測予測」を計算する。
学習時には「予測予測損失」を最小限に抑えて学習済みの樹木の微調整パラメーターを微調整する。
論文 参考訳(メタデータ) (2020-06-29T19:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。