論文の概要: Distilling interpretable causal trees from causal forests
- arxiv url: http://arxiv.org/abs/2408.01023v1
- Date: Fri, 2 Aug 2024 05:48:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:26:49.219757
- Title: Distilling interpretable causal trees from causal forests
- Title(参考訳): 因果樹から解釈可能な因果樹を蒸留する
- Authors: Patrick Rehill,
- Abstract要約: 条件平均処理効果の高次元分布は、正確な個々のレベルの推定を与える可能性がある。
本論文は, 原生林から1本, 解釈可能な因果樹を蒸留する方法である, 希釈因果樹を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods for estimating treatment effect heterogeneity promise greater flexibility than existing methods that test a few pre-specified hypotheses. However, one problem these methods can have is that it can be challenging to extract insights from complicated machine learning models. A high-dimensional distribution of conditional average treatment effects may give accurate, individual-level estimates, but it can be hard to understand the underlying patterns; hard to know what the implications of the analysis are. This paper proposes the Distilled Causal Tree, a method for distilling a single, interpretable causal tree from a causal forest. This compares well to existing methods of extracting a single tree, particularly in noisy data or high-dimensional data where there are many correlated features. Here it even outperforms the base causal forest in most simulations. Its estimates are doubly robust and asymptotically normal just as those of the causal forest are.
- Abstract(参考訳): 治療効果のヘテロジニティを推定する機械学習手法は、いくつかのあらかじめ特定された仮説をテストする既存の方法よりも柔軟性が高い。
しかし、これらの手法が抱える1つの問題は、複雑な機械学習モデルから洞察を抽出することが難しいことである。
条件付き平均治療効果の高次元分布は、正確で個々のレベルの見積もりを与えるが、根底にあるパターンを理解することは困難であり、分析の意味を理解することは困難である。
本論文は, 原生林から1本, 解釈可能な因果樹を蒸留する方法である, 希釈因果樹を提案する。
これは、特に多くの相関する特徴があるノイズの多いデータや高次元データにおいて、単一の木を抽出する既存の方法とよく比較できる。
ここでは、ほとんどのシミュレーションにおいて、基礎となる因果林よりも優れています。
その推定値は2倍に頑丈で、因果樹林と同様に漸近的に正常である。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Decision trees compensate for model misspecification [29.436464740855598]
本研究は,木深度が真の相互作用の欠如に果たす役割について,5つの仮説を提示する。
ツリーモデルの成功の一部は、様々な種類の誤特定に対する堅牢性によるものである。
本稿では,合成および混合応答シナリオに対処する2つの線形モデルについて述べる。
論文 参考訳(メタデータ) (2023-02-08T14:32:58Z) - Active learning of causal probability trees [0.0]
干渉データと観測データを組み合わせて確率木を学習する手法を提案する。
この方法は、介入から期待される情報ゲインを定量化し、最大のゲインで介入を選択する。
論文 参考訳(メタデータ) (2022-05-17T08:56:34Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
データから酸素抽出率(OEF)と脱酸素血液量(DBV)をより明瞭に決定する。
既存の推論手法では、DBVを過大評価しながら非常にノイズの多い、過小評価されたEFマップが得られる傾向にある。
本研究は, OEFとDBVの可算分布を推定できる確率論的機械学習手法について述べる。
論文 参考訳(メタデータ) (2022-03-11T10:47:16Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Trading Complexity for Sparsity in Random Forest Explanations [20.87501058448681]
決定木の厳格な多数を占める主要な要因である主な理由を紹介する。
さまざまなデータセットで実施された実験は、ランタイムの複雑さとスパシティのトレードオフの存在を明らかにしている。
論文 参考訳(メタデータ) (2021-08-11T15:19:46Z) - Achieving Reliable Causal Inference with Data-Mined Variables: A Random
Forest Approach to the Measurement Error Problem [1.5749416770494704]
一般的な実証的戦略は、利用可能なデータから関心のある変数を'マイニング'する予測モデリング手法の適用を含む。
最近の研究は、機械学習モデルからの予測は必然的に不完全であるため、予測変数に基づく計量分析は測定誤差によるバイアスに悩まされる可能性が高いことを強調している。
ランダムフォレストと呼ばれるアンサンブル学習技術を用いて,これらのバイアスを軽減する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-19T21:48:23Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。