Riemannian Metric Learning via Optimal Transport
- URL: http://arxiv.org/abs/2205.09244v1
- Date: Wed, 18 May 2022 23:32:20 GMT
- Title: Riemannian Metric Learning via Optimal Transport
- Authors: Christopher Scarvelis, Justin Solomon
- Abstract summary: We introduce an optimal transport-based model for learning a metric from cross-sectional samples of evolving probability measures.
We show that metrics learned using our method improve the quality of trajectory inference on scRNA and bird migration data.
- Score: 34.557360177483595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an optimal transport-based model for learning a metric tensor
from cross-sectional samples of evolving probability measures on a common
Riemannian manifold. We neurally parametrize the metric as a spatially-varying
matrix field and efficiently optimize our model's objective using
backpropagation. Using this learned metric, we can nonlinearly interpolate
between probability measures and compute geodesics on the manifold. We show
that metrics learned using our method improve the quality of trajectory
inference on scRNA and bird migration data at the cost of little additional
cross-sectional data.
Related papers
- Score-based pullback Riemannian geometry [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.
We produce high-quality geodesics through the data support and reliably estimates the intrinsic dimension of the data manifold.
Our framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Sasaki Metric for Spline Models of Manifold-Valued Trajectories [0.0]
We propose a generic framework to analyze manifold-valued measurements.
We evaluate our framework in comparison to state-of-the-art methods within qualitative and quantitative experiments on hurricane tracks.
arXiv Detail & Related papers (2023-03-30T11:24:56Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Manifold embedding data-driven mechanics [0.0]
This article introduces a new data-driven approach that leverages a manifold embedding generated by the invertible neural network.
We achieve this by training a deep neural network to globally map data from the manifold onto a lower-dimensional Euclidean vector space.
arXiv Detail & Related papers (2021-12-18T04:38:32Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Efficient Robust Optimal Transport with Application to Multi-Label
Classification [12.521494095948068]
We model the feature-feature relationship via a symmetric positive semi-definite Mahalanobis metric in the OT cost function.
We view the resulting optimization problem as a non-linear OT problem, which we solve using the Frank-Wolfe algorithm.
Empirical results on the discriminative learning setting, such as tag prediction and multi-class classification, illustrate the good performance of our approach.
arXiv Detail & Related papers (2020-10-22T16:43:52Z) - On the minmax regret for statistical manifolds: the role of curvature [68.8204255655161]
Two-part codes and the minimum description length have been successful in delivering procedures to single out the best models.
We derive a sharper expression than the standard one given by the complexity, where the scalar curvature of the Fisher information metric plays a dominant role.
arXiv Detail & Related papers (2020-07-06T17:28:19Z) - Uniform Interpolation Constrained Geodesic Learning on Data Manifold [28.509561636926414]
Along the learned geodesic, our method can generate high-qualitys between two given data samples.
We provide a theoretical analysis of our model and use image translation as an example to demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2020-02-12T07:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.