Ro-vibrational energy and thermodynamic properties of molecules
subjected to Deng-Fan potential through an improved approximation
- URL: http://arxiv.org/abs/2205.09590v1
- Date: Thu, 19 May 2022 14:32:19 GMT
- Title: Ro-vibrational energy and thermodynamic properties of molecules
subjected to Deng-Fan potential through an improved approximation
- Authors: Debraj Nath and Amlan K. Roy
- Abstract summary: A modified Pekeris-type approximation is proposed for the centrifugal term.
The effect of quantum correction on partition function and thermodynamic properties is discussed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate solution of the Schr\"odinger equation with Deng-Fan potential is
presented by means of Nikiforov-Uvarov method. A modified Pekeris-type
approximation is proposed for the centrifugal term, from a linear combination
of the $r \to 0$ and $r \to r_e$ limits. It can potentially offer a series of
approximations (depending on an adjustable parameter $\lambda$). The existing
approximations in the literature can then be recovered in certain special
cases. Its efficiency and feasibility is demonstrated by a critical comparison
of eigenvalues produced at various $\lambda$'s for four molecules, \emph{viz.},
H$_2$, LiH, HCl and CO. Analytical expressions are derived for energies,
eigenfunctions and the thermodynamic properties such as vibrational mean free
energy, vibrational free energy, vibrational entropy and vibrational specific
heat. The effect of quantum correction on partition function and thermodynamic
properties is discussed by including the correction up to 10th-order, for H$_2$
and LiH. The effect of $\lambda$ parameter on these properties is also studied.
Related papers
- The Tempered Hilbert Simplex Distance and Its Application To Non-linear
Embeddings of TEMs [36.135201624191026]
We introduce three different parameterizations of finite discrete TEMs via Legendre functions of the negative tempered entropy function.
Similar to the Hilbert geometry, the tempered Hilbert distance is characterized as a $t$-symmetrization of the oriented tempered Funk distance.
arXiv Detail & Related papers (2023-11-22T15:24:29Z) - Arbitrary $\ell$-state solutions of the Klein-Gordon equation with the
Eckart plus a class of Yukawa potential and its non-relativistic thermal
properties [0.0]
We present any $ell$-state energy eigenvalues and the corresponding normalized wave functions of a mentioned system in a closed form.
We calculate the non-relativistic thermodynamic quantities for the potential model in question, and investigate them for a few diatomic molecules.
arXiv Detail & Related papers (2023-04-01T23:22:23Z) - Eigen Solution and Thermodynamic Properties of Manning Rosen Plus
Exponential Yukawa Potential [0.0]
We obtained analytical bound state solution of the Schr"odinger equation with Manning Rosen plus Yukawa Potential.
The energy eigen equation was determined and presented in compact form.
arXiv Detail & Related papers (2023-03-21T11:56:32Z) - Brownian Axion-like particles [11.498089180181365]
We study the non-equilibrium dynamics of a pseudoscalar axion-like particle (ALP) weakly coupled to degrees of freedom in thermal equilibrium.
Time evolution is determined by the in-in effective action which we obtain to leading order in the (ALP) coupling.
We discuss possible cosmological consequences on structure formation, the effective number of relativistic species and birefringence of the cosmic microwave background.
arXiv Detail & Related papers (2022-09-16T00:35:04Z) - Approximate Solutions, Thermal Properties and Superstatistics Solutions
to Schr\"odinger Equation [0.0]
We study thermal properties and superstatistics in terms of partition function (Z) and other thermodynamic properties.
The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential and Coulomb potential as special cases.
arXiv Detail & Related papers (2021-10-16T22:02:50Z) - Super-statistics and quantum entanglement in the isotropic spin-1/2 XX
dimmer from a non-additive thermodynamics perspective [0.0]
In this paper, the impact of temperature fluctuations in the entanglement of two qubits described by a spin-1/2 XX model is studied.
To describe the out-of-equilibrium situation, super-statistics is used with fluctuations given by a $chi2$ distribution function.
arXiv Detail & Related papers (2021-05-12T00:31:39Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Thermal Properties of Deng-Fan-Eckart Potential model using Poisson
Summation Approach [0.0]
The Deng-Fan-Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules.
The thermodynamic properties of some selected diatomic molecules(H2, CO, and ScN ) were obtained using Poisson summation method.
arXiv Detail & Related papers (2020-09-19T20:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.