論文の概要: Range and Angle Estimation with Spiking Neural Resonators for FMCW Radar
- arxiv url: http://arxiv.org/abs/2503.00898v1
- Date: Sun, 02 Mar 2025 13:51:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:21.740654
- Title: Range and Angle Estimation with Spiking Neural Resonators for FMCW Radar
- Title(参考訳): FMCWレーダ用スパイクニューラル共振器のレンジと角度推定
- Authors: Nico Reeb, Javier Lopez-Randulfe, Robin Dietrich, Alois C. Knoll,
- Abstract要約: 自動車レーダーシステムは、高いサンプリングレートと大規模なデータ帯域幅を管理するという課題に直面している。
ニューロモルフィックコンピューティングは、その固有のエネルギー効率と並列処理能力のために、有望なソリューションを提供する。
本研究では、周波数変調連続波レーダ(FMCW)の信号処理のための新しいスパイキングニューロンモデルを提案する。
- 参考スコア(独自算出の注目度): 16.91912935835324
- License:
- Abstract: Automotive radar systems face the challenge of managing high sampling rates and large data bandwidth while complying with stringent real-time and energy efficiency requirements. The growing complexity of autonomous vehicles further intensifies these requirements. Neuromorphic computing offers promising solutions because of its inherent energy efficiency and parallel processing capacity. This research presents a novel spiking neuron model for signal processing of frequency-modulated continuous wave (FMCW) radars that outperforms the state-of-the-art spectrum analysis algorithms in latency and data bandwidth. These spiking neural resonators are based on the resonate-and-fire neuron model and optimized to dynamically process raw radar data while simultaneously emitting an output in the form of spikes. We designed the first neuromorphic neural network consisting of these spiking neural resonators that estimates range and angle from FMCW radar data. We evaluated the range-angle maps on simulated datasets covering multiple scenarios and compared the results with a state-of-the-art pipeline for radar processing. The proposed neuron model significantly reduces the processing latency compared to traditional frequency analysis algorithms, such as the Fourier transformation (FT), which needs to sample and store entire data frames before processing. The evaluations demonstrate that these spiking neural resonators achieve state-of-the-art detection accuracy while emitting spikes simultaneously to processing and transmitting only 0.02 % of the data compared to a float-32 FT. The results showcase the potential for neuromorphic signal processing for FMCW radar systems and pave the way for designing neuromorphic radar sensors.
- Abstract(参考訳): 自動車レーダシステムは、厳格なリアルタイムとエネルギー効率の要求に従いながら、高いサンプリングレートと大きなデータ帯域幅を管理するという課題に直面している。
自動運転車の複雑さの増大により、これらの要件はさらに強化される。
ニューロモルフィックコンピューティングは、その固有のエネルギー効率と並列処理能力のために、有望なソリューションを提供する。
本研究では、周波数変調連続波レーダ(FMCW)の信号処理のための新しいスパイクニューロンモデルを提案する。
これらのスパイク型ニューラル共振器は共振・発火ニューロンモデルに基づいており、スパイクの形で出力を同時に出力しながら、生のレーダデータを動的に処理するように最適化されている。
我々は、FMCWレーダデータから距離と角度を推定するこれらのスパイク型ニューラル共振器からなる、最初のニューロモルフィックニューラルネットワークを設計した。
我々は,複数のシナリオをカバーするシミュレーションデータセットのレンジ角マップを評価し,その結果をレーダ処理のための最先端パイプラインと比較した。
提案したニューロンモデルは、処理前に全データフレームをサンプリングして保存する必要があるフーリエ変換(FT)のような従来の周波数解析アルゴリズムと比較して、処理遅延を著しく低減する。
その結果、これらのスパイク型ニューラル共振器は、処理と同時にスパイクを発生させ、フロート32FTと比較してデータの0.02 %しか送信していない。
その結果、FMCWレーダシステムにおけるニューロモルフィック信号処理の可能性を示し、ニューロモルフィックレーダセンサの設計方法を明らかにした。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation [9.865041274657823]
本稿では,周波数変調連続波(WFMC)レーダ相互干渉緩和のためのニューラルネットワーク(NN)のトレーニング手法を提案する。
NNが干渉されたレーダー信号をきれいにするために訓練する代わりに、NNをオブジェクト検出マップ上で直接訓練する。
我々は,レーダを用いた物体検出のアルゴリズムであるCA-CFARピーク検出器の連続的な緩和を行う。
論文 参考訳(メタデータ) (2023-12-15T13:47:16Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
本稿では,ミリ波(mmWave)およびテラヘルツ(THz)ネットワークサービスの動的屋外環境における信頼性向上のための新しい手法を提案する。
これらの設定では、人や車などの障害物を動かすことで、視線接続(LoS)が簡単に中断される。
提案手法はRadar-Aided Blockage Dynamic Recognition (RaDaR)と呼ばれ、レーダー計測とフェデレートラーニング(FL)を活用して、二重出力ニューラルネットワーク(NN)モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-22T10:10:25Z) - RF-Photonic Deep Learning Processor with Shannon-Limited Data Movement [0.0]
光ニューラルネットワーク(ONN)は、超低レイテンシとエネルギー消費を持つ有望な加速器である。
我々は、周波数領域のデータを符号化する乗法的アナログ周波数変換ONN(MAFT-ONN)を導入する。
我々は、生のRF信号で完全にアナログのディープラーニングを演算する最初のハードウェアアクセラレータを実験的に実証した。
論文 参考訳(メタデータ) (2022-07-08T16:37:13Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
本研究では、パルス内変調型レーダ信号を自動的に認識するディープラーニングに基づく新しい手法を提案する。
提案するFF-CNN技術は,現在の最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T20:18:17Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
高雑音および地中設定におけるインパルス応答推定は難しい問題である。
本稿では,ニューラル表現学習の最近の進歩に基づいて,インパルス応答のパラメータ化と推定を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T18:57:23Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Quantized Neural Networks for Radar Interference Mitigation [14.540226579203207]
CNNに基づくノイズ除去と干渉緩和のアプローチはレーダ処理に有望な結果をもたらす。
本稿では,CNNに基づくレーダ信号のノイズ除去と干渉緩和のための量子化手法について検討する。
論文 参考訳(メタデータ) (2020-11-25T13:18:06Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。