論文の概要: End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation
- arxiv url: http://arxiv.org/abs/2312.09790v1
- Date: Fri, 15 Dec 2023 13:47:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 15:41:59.757606
- Title: End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation
- Title(参考訳): 自動車用レーダ干渉軽減のためのニューラルネットワークのエンドツーエンドトレーニング
- Authors: Christian Oswald, Mate Toth, Paul Meissner, Franz Pernkopf
- Abstract要約: 本稿では,周波数変調連続波(WFMC)レーダ相互干渉緩和のためのニューラルネットワーク(NN)のトレーニング手法を提案する。
NNが干渉されたレーダー信号をきれいにするために訓練する代わりに、NNをオブジェクト検出マップ上で直接訓練する。
我々は,レーダを用いた物体検出のアルゴリズムであるCA-CFARピーク検出器の連続的な緩和を行う。
- 参考スコア(独自算出の注目度): 9.865041274657823
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we propose a new method for training neural networks (NNs) for
frequency modulated continuous wave (FMCW) radar mutual interference
mitigation. Instead of training NNs to regress from interfered to clean radar
signals as in previous work, we train NNs directly on object detection maps. We
do so by performing a continuous relaxation of the cell-averaging constant
false alarm rate (CA-CFAR) peak detector, which is a well-established algorithm
for object detection using radar. With this new training objective we are able
to increase object detection performance by a large margin. Furthermore, we
introduce separable convolution kernels to strongly reduce the number of
parameters and computational complexity of convolutional NN architectures for
radar applications. We validate our contributions with experiments on
real-world measurement data and compare them against signal processing
interference mitigation methods.
- Abstract(参考訳): 本稿では,周波数変調連続波(FMCW)レーダ相互干渉緩和のためのニューラルネットワーク(NN)のトレーニング手法を提案する。
NNが干渉されたレーダー信号をきれいにするために訓練する代わりに、NNをオブジェクト検出マップ上で直接訓練する。
我々は,レーダーを用いた物体検出のための確立されたアルゴリズムであるca-cfarピーク検出器のセル平均値(ca-cfar)を連続的に緩和する。
この新たなトレーニング目標により、オブジェクト検出性能を大きなマージンで向上することが可能になります。
さらに、レーダーアプリケーションのための畳み込みNNアーキテクチャのパラメータ数と計算複雑性を強く低減するために、分離可能な畳み込みカーネルを導入する。
実世界の計測データに対する実験への貢献を検証し、信号処理干渉緩和法と比較する。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Angle-Equivariant Convolutional Neural Networks for Interference
Mitigation in Automotive Radar [9.865041274657823]
到達角度の異なる学習パターンを転送可能なランク3畳み込みを用いた完全畳み込みニューラルネットワーク(CNN)を導入する。
提案したアーキテクチャは,ロバスト性が高く,トレーニング可能なパラメータの数も少ないため,従来よりも優れていた。
論文 参考訳(メタデータ) (2023-12-18T12:37:12Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
無線信号認識は電子戦において重要な機能である。
電子戦システムでは、レーダパルス活動の正確な識別と位置決めが要求される。
ディープラーニングに基づくレーダーパルス活動認識法は、ほとんど未検討のままである。
論文 参考訳(メタデータ) (2023-12-15T01:56:27Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Identifying Coordination in a Cognitive Radar Network -- A
Multi-Objective Inverse Reinforcement Learning Approach [30.65529797672378]
本稿では,レーダ間のコーディネーションを検出するために,新しい多目的逆強化学習手法を提案する。
また、多目的最適化システムの逆検出と学習に関するより一般的な問題にも適用できる。
論文 参考訳(メタデータ) (2022-11-13T17:27:39Z) - Data-Driven Target Localization Using Adaptive Radar Processing and Convolutional Neural Networks [18.50309014013637]
本稿では,アダプティブレーダ検出後のレーダターゲット位置推定を改善するためのデータ駆動方式を提案する。
我々は、正規化適応整合フィルタ(NAMF)のレーダリターン、範囲、方位(およびドップラー)から熱マップテンソルを生成する。
次に、これらの熱マップテンソルからターゲット位置を推定するために回帰畳み込みニューラルネットワーク(CNN)を訓練する。
論文 参考訳(メタデータ) (2022-09-07T02:23:40Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - Quantized Neural Networks for Radar Interference Mitigation [14.540226579203207]
CNNに基づくノイズ除去と干渉緩和のアプローチはレーダ処理に有望な結果をもたらす。
本稿では,CNNに基づくレーダ信号のノイズ除去と干渉緩和のための量子化手法について検討する。
論文 参考訳(メタデータ) (2020-11-25T13:18:06Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。