論文の概要: Low-rank tensor decompositions of quantum circuits
- arxiv url: http://arxiv.org/abs/2205.09882v3
- Date: Mon, 2 Jan 2023 11:10:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-12 15:26:21.086620
- Title: Low-rank tensor decompositions of quantum circuits
- Title(参考訳): 量子回路の低ランクテンソル分解
- Authors: Patrick Gel{\ss}, Stefan Klus, Sebastian Knebel, Zarin Shakibaei,
Sebastian Pokutta
- Abstract要約: 我々はMPOを用いて量子状態、量子ゲート、量子回路全体を低ランクテンソルとして表現する方法を示す。
これにより、古典コンピュータ上の複雑な量子回路の解析とシミュレーションが可能になる。
- 参考スコア(独自算出の注目度): 14.531461873576449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is arguably one of the most revolutionary and disruptive
technologies of this century. Due to the ever-increasing number of potential
applications as well as the continuing rise in complexity, the development,
simulation, optimization, and physical realization of quantum circuits is of
utmost importance for designing novel algorithms. We show how matrix product
states (MPSs) and matrix product operators (MPOs) can be used to express
certain quantum states, quantum gates, and entire quantum circuits as low-rank
tensors. This enables the analysis and simulation of complex quantum circuits
on classical computers and to gain insight into the underlying structure of the
system. We present different examples to demonstrate the advantages of MPO
formulations and show that they are more efficient than conventional techniques
if the bond dimensions of the wave function representation can be kept small
throughout the simulation.
- Abstract(参考訳): 量子コンピューティングは今世紀で最も革命的で破壊的な技術であることは間違いない。
量子回路の開発、シミュレーション、最適化、物理的実現は、新たなアルゴリズムの設計において最も重要である。
行列積状態 (MPSs) と行列積作用素 (MPOs) は、特定の量子状態、量子ゲート、量子回路全体を低ランクテンソルとして表現できることを示す。
これにより、古典コンピュータ上の複雑な量子回路の解析とシミュレーションが可能になり、システムの基盤構造に関する洞察を得ることができる。
本稿では,MPOの利点を示す様々な例を示し,波動関数表現の結合次元をシミュレーションを通して小さく保つことができれば,従来の手法よりも効率がよいことを示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
雑音の多いコンピュータ上でのオープン量子システムの力学をシミュレートする実用的な手法を提案する。
提案手法は,IBM-Q実機におけるゲートノイズを利用して,2量子ビットのみを用いて計算を行う。
最後に、トロッター展開を行う際の量子回路の深さの増大に対処するため、短期力学シミュレーションを拡張するために転送テンソル法(TTM)を導入した。
論文 参考訳(メタデータ) (2023-12-03T13:56:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
行列生成状態(MPS)と演算子(MPO)は、量子多体系を研究するための強力なツールであることが証明されている。
テンソルネットワークの形で古典的な知識を用いることで、制限された量子資源をよりよく活用できることを示す。
論文 参考訳(メタデータ) (2023-05-30T17:21:52Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
量子デバイスで物理的に実現可能な低深さ量子回路を開発することが不可欠である。
我々は,最適なアンサッツを動的に調整できるアンサッツ構成プロトコルを開発した。
アンザッツの構成は、エネルギーソートと演算子の可換性事前スクリーニングによって並列量子アーキテクチャで実行される可能性がある。
論文 参考訳(メタデータ) (2023-02-07T11:22:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Real- and imaginary-time evolution with compressed quantum circuits [0.5089078998562184]
量子回路は、現在の古典的数値よりも劇的に効率的な表現を提供できることを示す。
量子回路では、短期量子コンピュータで実現可能な最適化アルゴリズムを用いて、実時間と虚時間の両方の進化を行う。
論文 参考訳(メタデータ) (2020-08-24T11:16:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。