Learning Progress Driven Multi-Agent Curriculum
- URL: http://arxiv.org/abs/2205.10016v3
- Date: Thu, 15 May 2025 11:37:19 GMT
- Title: Learning Progress Driven Multi-Agent Curriculum
- Authors: Wenshuai Zhao, Zhiyuan Li, Joni Pajarinen,
- Abstract summary: Number of agents can be an effective curriculum variable for controlling the difficulty of multi-agent reinforcement learning (MARL) tasks.<n>We identify two potential flaws while applying existing reward-based automatic curriculum learning methods in MARL.<n>We propose to control the curriculum by using a TD-error based *learning progress* measure and by letting the curriculum proceed from an initial context distribution to the final task specific one.
- Score: 16.228784877899976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The number of agents can be an effective curriculum variable for controlling the difficulty of multi-agent reinforcement learning (MARL) tasks. Existing work typically uses manually defined curricula such as linear schemes. We identify two potential flaws while applying existing reward-based automatic curriculum learning methods in MARL: (1) The expected episode return used to measure task difficulty has high variance; (2) Credit assignment difficulty can be exacerbated in tasks where increasing the number of agents yields higher returns which is common in many MARL tasks. To address these issues, we propose to control the curriculum by using a TD-error based *learning progress* measure and by letting the curriculum proceed from an initial context distribution to the final task specific one. Since our approach maintains a distribution over the number of agents and measures learning progress rather than absolute performance, which often increases with the number of agents, we alleviate problem (2). Moreover, the learning progress measure naturally alleviates problem (1) by aggregating returns. In three challenging sparse-reward MARL benchmarks, our approach outperforms state-of-the-art baselines.
Related papers
- Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL)<n>We propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually.<n>E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B)
arXiv Detail & Related papers (2025-06-07T02:41:54Z) - SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.
Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.
We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.
Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Guiding Through Complexity: What Makes Good Supervision for Hard Math Reasoning Tasks? [74.88417042125985]
We investigate various data-driven strategies that offer supervision data at different quality levels upon tasks of varying complexity.<n>We find that even when the outcome error rate for hard task supervision is high, training on such data can outperform perfectly correct supervision of easier subtasks.<n>Our results also reveal that supplementing hard task supervision with the corresponding subtask supervision can yield notable performance improvements.
arXiv Detail & Related papers (2024-10-27T17:55:27Z) - Continuous Control with Coarse-to-fine Reinforcement Learning [15.585706638252441]
We present a framework that trains RL agents to zoom-into a continuous action space in a coarse-to-fine manner.
We introduce a concrete, value-based algorithm within the framework called Coarse-to-fine Q-Network (CQN)
CQN robustly learns to solve real-world manipulation tasks within a few minutes of online training.
arXiv Detail & Related papers (2024-07-10T16:04:08Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - RL$^3$: Boosting Meta Reinforcement Learning via RL inside RL$^2$ [12.111848705677142]
We propose RL$3$, a hybrid approach that incorporates action-values, learned per task through traditional RL, in the inputs to meta-RL.
We show that RL$3$ earns greater cumulative reward in the long term, compared to RL$2$, while maintaining data-efficiency in the short term, and generalizes better to out-of-distribution tasks.
arXiv Detail & Related papers (2023-06-28T04:16:16Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Towards Skilled Population Curriculum for Multi-Agent Reinforcement
Learning [42.540853953923495]
We introduce a novel automatic curriculum learning framework, Skilled Population Curriculum (SPC), which adapts curriculum learning to multi-agent coordination.
Specifically, we endow the student with population-invariant communication and a hierarchical skill set, allowing it to learn cooperation and behavior skills from distinct tasks with varying numbers of agents.
We also analyze the inherent non-stationarity of this multi-agent automatic curriculum teaching problem and provide a corresponding regret bound.
arXiv Detail & Related papers (2023-02-07T12:30:52Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
A major challenge of reinforcement learning (RL) in real-world applications is the variation between environments, tasks or clients.
Standard MRL methods optimize the average return over tasks, but often suffer from poor results in tasks of high risk or difficulty.
In this work, we define a robust MRL objective with a controlled level.
The data inefficiency is addressed via the novel Robust Meta RL algorithm (RoML)
arXiv Detail & Related papers (2023-01-26T14:54:39Z) - Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task
Distributions [8.88133567816717]
We name this problem as Semi-supervised meta-learning with Evolving Task diStributions, abbreviated as SETS.
We propose an OOD Robust and knowleDge presErved semi-supeRvised meta-learning approach (ORDER) to tackle these two major challenges.
Specifically, our ORDER introduces a novel mutual information regularization to robustify the model with unlabeled OOD data and adopts an optimal transport regularization to remember previously learned knowledge in feature space.
arXiv Detail & Related papers (2022-09-03T21:22:14Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Variational Automatic Curriculum Learning for Sparse-Reward Cooperative
Multi-Agent Problems [42.973910399533054]
We introduce a curriculum learning algorithm, Variational Automatic Curriculum Learning (VACL), for solving cooperative multi-agent reinforcement learning problems.
Our VACL algorithm implements this variational paradigm with two practical components, task expansion and entity progression.
Experiment results show that VACL solves a collection of sparse-reward problems with a large number of agents.
arXiv Detail & Related papers (2021-11-08T16:35:08Z) - URLB: Unsupervised Reinforcement Learning Benchmark [82.36060735454647]
We introduce the Unsupervised Reinforcement Learning Benchmark (URLB)
URLB consists of two phases: reward-free pre-training and downstream task adaptation with extrinsic rewards.
We provide twelve continuous control tasks from three domains for evaluation and open-source code for eight leading unsupervised RL methods.
arXiv Detail & Related papers (2021-10-28T15:07:01Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
generalize policies learned on a few tasks over a high-dimensional observation space to similar tasks not seen during training.
Many promising approaches to this challenge consider RL as a process of training two functions simultaneously.
We propose Cross-Trajectory Representation Learning (CTRL), a method that runs within an RL agent and conditions its encoder to recognize behavioral similarity in observations.
arXiv Detail & Related papers (2021-06-04T00:43:10Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
We introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings.
We evaluate several recent MARL methods, and benchmark state-of-the-art LLL algorithms in limited memory and computation.
We empirically show that the agents trained in our setup are able to coordinate well with unseen agents, without any additional assumptions made by previous works.
arXiv Detail & Related papers (2021-03-04T18:44:03Z) - Conservative Q-Learning for Offline Reinforcement Learning [106.05582605650932]
We show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return.
We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees.
arXiv Detail & Related papers (2020-06-08T17:53:42Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning.
Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design.
We propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task.
This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms.
arXiv Detail & Related papers (2020-04-24T15:48:07Z) - Trying AGAIN instead of Trying Longer: Prior Learning for Automatic
Curriculum Learning [39.489869446313065]
A major challenge in the Deep RL (DRL) community is to train agents able to generalize over unseen situations.
We propose a two stage ACL approach where 1) a teacher algorithm first learns to train a DRL agent with a high-exploration curriculum, and then 2) distills learned priors from the first run to generate an "expert curriculum"
Besides demonstrating 50% improvements on average over the current state of the art, the objective of this work is to give a first example of a new research direction oriented towards refining ACL techniques over multiple learners.
arXiv Detail & Related papers (2020-04-07T07:30:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.