Federated learning for violence incident prediction in a simulated
cross-institutional psychiatric setting
- URL: http://arxiv.org/abs/2205.10234v1
- Date: Tue, 17 May 2022 07:37:12 GMT
- Title: Federated learning for violence incident prediction in a simulated
cross-institutional psychiatric setting
- Authors: Thomas Borger, Pablo Mosteiro, Heysem Kaya, Emil Rijcken, Albert Ali
Salah, Floortje Scheepers, Marco Spruit
- Abstract summary: Knowing who might become violent can influence staffing levels and severity.
Machine learning models can assess each patient's likelihood of becoming violent based on clinical notes.
Federated Learning can overcome the problem of data limitation by training models in a decentralised manner.
- Score: 3.6939898792640213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inpatient violence is a common and severe problem within psychiatry. Knowing
who might become violent can influence staffing levels and mitigate severity.
Predictive machine learning models can assess each patient's likelihood of
becoming violent based on clinical notes. Yet, while machine learning models
benefit from having more data, data availability is limited as hospitals
typically do not share their data for privacy preservation. Federated Learning
(FL) can overcome the problem of data limitation by training models in a
decentralised manner, without disclosing data between collaborators. However,
although several FL approaches exist, none of these train Natural Language
Processing models on clinical notes. In this work, we investigate the
application of Federated Learning to clinical Natural Language Processing,
applied to the task of Violence Risk Assessment by simulating a
cross-institutional psychiatric setting. We train and compare four models: two
local models, a federated model and a data-centralised model. Our results
indicate that the federated model outperforms the local models and has similar
performance as the data-centralised model. These findings suggest that
Federated Learning can be used successfully in a cross-institutional setting
and is a step towards new applications of Federated Learning based on clinical
notes
Related papers
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - Medical Federated Model with Mixture of Personalized and Sharing
Components [31.068735334318088]
We propose a new personalized framework of federated learning to handle the problem.
It successfully yields personalized models based on awareness of similarity between local data.
Also, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly.
arXiv Detail & Related papers (2023-06-26T07:50:32Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Personalized Federated Learning with Clustering: Non-IID Heart Rate
Variability Data Application [0.1465840097113565]
We propose Personalized Federated Cluster Models, a hierarchical clustering-based FL process, to predict Major Depressive Disorder severity from Heart Rate Variability.
By allowing clients to receive more personalized model, we address problems caused by non-IID data, showing an accuracy increase in severity prediction.
arXiv Detail & Related papers (2021-08-04T08:24:23Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - The unreasonable effectiveness of Batch-Norm statistics in addressing
catastrophic forgetting across medical institutions [8.244654685687054]
We investigate trade-off between model refinement and retention of previously learned knowledge.
We propose a simple yet effective approach, adapting Elastic weight consolidation (EWC) using the global batch normalization statistics of the original dataset.
arXiv Detail & Related papers (2020-11-16T16:57:05Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.