論文の概要: On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
- arxiv url: http://arxiv.org/abs/2205.10287v3
- Date: Fri, 01 Nov 2024 02:01:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 21:01:11.937241
- Title: On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
- Title(参考訳): 適応勾配アルゴリズムのSDEとスケーリング規則について
- Authors: Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, Sanjeev Arora,
- Abstract要約: 微分方程式(SDE)としての勾配 Descent (SGD) の適用により、研究者は連続的な最適化軌道の研究の利点を享受できるようになった。
本稿では、RMSpropとAdamのSDE近似を導出し、理論上の正確性を保証するとともに、それらの適用性を検証する。
- 参考スコア(独自算出の注目度): 45.007261870784475
- License:
- Abstract: Approximating Stochastic Gradient Descent (SGD) as a Stochastic Differential Equation (SDE) has allowed researchers to enjoy the benefits of studying a continuous optimization trajectory while carefully preserving the stochasticity of SGD. Analogous study of adaptive gradient methods, such as RMSprop and Adam, has been challenging because there were no rigorously proven SDE approximations for these methods. This paper derives the SDE approximations for RMSprop and Adam, giving theoretical guarantees of their correctness as well as experimental validation of their applicability to common large-scaling vision and language settings. A key practical result is the derivation of a $\textit{square root scaling rule}$ to adjust the optimization hyperparameters of RMSprop and Adam when changing batch size, and its empirical validation in deep learning settings.
- Abstract(参考訳): 確率微分方程式 (SDE) として確率勾配 Descent (SGD) を近似することで、研究者は連続的な最適化軌道の研究の恩恵を享受し、SGDの確率性を注意深く保存することができる。
RMSpropやAdamのような適応勾配法のアナロジー研究は、これらの手法に厳密に証明されたSDE近似がないため、困難である。
本稿では、RMSpropとAdamのSDE近似を導出し、それらの正確性の理論的保証と、一般的な大規模視覚と言語設定への適用性の実験的検証を与える。
バッチサイズを変更する際にRMSpropとAdamの最適化ハイパーパラメータを調整するための$\textit{square root scaling rule}$の導出と、ディープラーニング設定における実証的な検証である。
関連論文リスト
- Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation [0.8192907805418583]
偏りのある勾配は滑らかな非函数に対する臨界点に収束することを示す。
適切なチューニングを行うことで,バイアスの効果を低減できることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:17:36Z) - Private Adaptive Gradient Methods for Convex Optimization [32.3523019355048]
適応的なステップサイズを持つグラディエント Descent (SGD) アルゴリズムの差分プライベート変種を提案・解析する。
両アルゴリズムの後悔に関する上限を与え、その境界が最適であることを示す。
論文 参考訳(メタデータ) (2021-06-25T16:46:45Z) - AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods [7.486132958737807]
適応性に対する暗黙的アプローチによる適応分散低減手法を提案する。
有限サム最小化問題に対する収束保証を提供し,局所幾何が許せばサラよりも高速に収束できることを示す。
このアルゴリズムはステップサイズを暗黙的に計算し、関数の局所リプシッツ滑らかさを効率的に推定する。
論文 参考訳(メタデータ) (2021-02-19T01:17:15Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
提案アルゴリズムは, 温和な条件下で, 制御可能なバイアスで正しい分布に収束する。
提案アルゴリズムは, 温和な条件下で, 制御可能なバイアスで正しい分布に収束可能であることを示す。
論文 参考訳(メタデータ) (2020-06-29T20:57:20Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
本稿では,Adamにおける2乗勾配のランニング平均を重み付き平均に置き換える適応学習率の原理を提案する。
これにより、より高速な適応が可能となり、より望ましい経験的収束挙動がもたらされる。
論文 参考訳(メタデータ) (2020-06-21T21:47:43Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
我々は、勾配収束法を期待する適応勾配法を証明した。
解析では、非理解勾配境界の最適化において、より適応的な勾配法に光を当てた。
論文 参考訳(メタデータ) (2018-08-16T20:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。