論文の概要: Delator: Automatic Detection of Money Laundering Evidence on Transaction
Graphs via Neural Networks
- arxiv url: http://arxiv.org/abs/2205.10293v1
- Date: Fri, 20 May 2022 16:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 18:03:37.497365
- Title: Delator: Automatic Detection of Money Laundering Evidence on Transaction
Graphs via Neural Networks
- Title(参考訳): Delator: ニューラルネットワークによるトランザクショングラフ上のマネーロンダリング証拠の自動検出
- Authors: Henrique S. Assump\c{c}\~ao, Fabr\'icio Souza, Leandro Lacerda Campos,
Vin\'icius T. de Castro Pires, Paulo M. Laurentys de Almeida, Fabricio Murai
- Abstract要約: マネーロンダリング活動を検出する新しいCAAT(Computer-assisted audit technology)であるDELATORを提案する。
ブラジルの銀行と共同で、数百万のクライアントからなる歴史的データ上でのDelaTORのパフォーマンスを定量化するための評価戦略を設計し、適用する。
- 参考スコア(独自算出の注目度): 1.904940310103857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Money laundering is one of the most relevant criminal activities today, due
to its potential to cause massive financial losses to governments, banks, etc.
We propose DELATOR, a new CAAT (computer-assisted audit technology) to detect
money laundering activities based on neural network models that encode bank
transfers as a large-scale temporal graph. In collaboration with a Brazilian
bank, we design and apply an evaluation strategy to quantify DELATOR's
performance on historic data comprising millions of clients. DELATOR
outperforms an off-the-shelf solution from Amazon AWS by 18.9% with respect to
AUC. We conducted real experiments that led to discovery of 8 new suspicious
among 100 analyzed cases, which would have been reported to the authorities
under the current criteria.
- Abstract(参考訳): マネーロンダリングは、政府や銀行などに巨額の金銭的損失をもたらす可能性があるため、今日最も関連する犯罪行為の1つである。
本研究では,銀行振替を大規模時間グラフとして符号化するニューラルネットワークモデルに基づく資金洗浄活動を検出するためのcaat(computer-assisted audit technology)であるdelatorを提案する。
ブラジルの銀行と共同で、数百万のクライアントからなる歴史的データ上でのDelaTORのパフォーマンスを定量化するための評価戦略を設計し、適用する。
DELATORは、AUCに関して、Amazon AWSの既製のソリューションを18.9%上回っている。
分析対象者100名のうち,新たに8名の不審な症例が発見され,現状の基準で当局に報告された。
関連論文リスト
- Across-Platform Detection of Malicious Cryptocurrency Transactions via Account Interaction Learning [19.2372535101502]
既存の悪意のあるトランザクション検出方法は、大量のラベル付きデータに依存する。
そこで我々はシャドウイーズ(ShadowEyes)を提案する。
公開データセットを用いて大規模な実験を行い,ShadowEyesの性能評価を行った。
論文 参考訳(メタデータ) (2024-10-31T02:01:42Z) - Graph Network Models To Detect Illicit Transactions In Block Chain [0.0]
暗号通貨は マネーロンダリングのような違法な活動を 増加させています
残差ネットワーク型アーキテクチャ(GAT-ResNet)を用いたグラフアテンションネットワークの適用により,この問題に対処する新しい手法を提案する。
以上の結果から,GAT-ResNetモデルが既存のグラフネットワークモデルよりも精度,信頼性,スケーラビリティに優れる可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-23T04:38:44Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Finding Money Launderers Using Heterogeneous Graph Neural Networks [0.0]
本稿では,大規模なヘテロジニアスネットワーク内のマネーロンダリング活動を特定するために,グラフニューラルネットワーク(GNN)アプローチを提案する。
我々は、MPNN(Message Passing Neural Network)と呼ばれる同種GNN法を拡張し、異種グラフ上で効果的に動作させる。
本研究は,異種グラフにおける情報の組み合わせにおいて,適切なGNNアーキテクチャを用いることの重要性を強調した。
論文 参考訳(メタデータ) (2023-07-25T13:49:15Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Catch Me If You Can: Semi-supervised Graph Learning for Spotting Money
Laundering [0.4159343412286401]
マネーロンダリング(英: Money laundering)とは、犯罪者が違法な資金を追跡不可能な場所に移すために金融サービスを利用するプロセスである。
反マネーロンダリング(AML)を施行するためには、これらの活動を正確かつ確実に特定することが極めて重要である。
本稿では,金融取引のグラフに対する半教師付きグラフ学習手法を用いて,マネーロンダリングに関連するノードを特定する。
論文 参考訳(メタデータ) (2023-02-23T09:34:19Z) - Fighting Money Laundering with Statistics and Machine Learning [95.42181254494287]
反マネーロンダリングのための統計的および機械学習手法に関する科学的文献はほとんどない。
本研究では,クライアントのリスクプロファイリングと疑わしい行動フラグングという2つの中心的要素を持つ統一用語を提案する。
論文 参考訳(メタデータ) (2022-01-11T21:31:18Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - A Time-Frequency based Suspicious Activity Detection for Anti-Money
Laundering [0.0]
マネーロンダリングは、犯罪者が犯罪の収益を金融システムに注入するために使う重要なメカニズムである。
これらの機関の現在のシステムのほとんどはルールベースであり、非効率である。
本稿では、金融取引の2次元表現を利用した時間周波数分析に基づく新しい特徴セットを提案する。
論文 参考訳(メタデータ) (2020-11-17T08:01:50Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。