論文の概要: Across-Platform Detection of Malicious Cryptocurrency Transactions via Account Interaction Learning
- arxiv url: http://arxiv.org/abs/2410.23563v1
- Date: Thu, 31 Oct 2024 02:01:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:59:26.103893
- Title: Across-Platform Detection of Malicious Cryptocurrency Transactions via Account Interaction Learning
- Title(参考訳): アカウントインタラクション学習による不正暗号取引のクロスプラットフォーム検出
- Authors: Zheng Che, Meng Shen, Zhehui Tan, Hanbiao Du, Liehuang Zhu, Wei Wang, Ting Chen, Qinglin Zhao, Yong Xie,
- Abstract要約: 既存の悪意のあるトランザクション検出方法は、大量のラベル付きデータに依存する。
そこで我々はシャドウイーズ(ShadowEyes)を提案する。
公開データセットを用いて大規模な実験を行い,ShadowEyesの性能評価を行った。
- 参考スコア(独自算出の注目度): 19.2372535101502
- License:
- Abstract: With the rapid evolution of Web3.0, cryptocurrency has become a cornerstone of decentralized finance. While these digital assets enable efficient and borderless financial transactions, their pseudonymous nature has also attracted malicious activities such as money laundering, fraud, and other financial crimes. Effective detection of malicious transactions is crucial to maintaining the security and integrity of the Web 3.0 ecosystem. Existing malicious transaction detection methods rely on large amounts of labeled data and suffer from low generalization. Label-efficient and generalizable malicious transaction detection remains a challenging task. In this paper, we propose ShadowEyes, a novel malicious transaction detection method. Specifically, we first propose a generalized graph structure named TxGraph as a representation of malicious transaction, which captures the interaction features of each malicious account and its neighbors. Then we carefully design a data augmentation method tailored to simulate the evolution of malicious transactions to generate positive pairs. To alleviate account label scarcity, we further design a graph contrastive mechanism, which enables ShadowEyes to learn discriminative features effectively from unlabeled data, thereby enhancing its detection capabilities in real-world scenarios. We conduct extensive experiments using public datasets to evaluate the performance of ShadowEyes. The results demonstrate that it outperforms state-of-the-art (SOTA) methods in four typical scenarios. Specifically, in the zero-shot learning scenario, it can achieve an F1 score of 76.98% for identifying gambling transactions, surpassing the SOTA method by12.05%. In the scenario of across-platform malicious transaction detection, ShadowEyes maintains an F1 score of around 90%, which is 10% higher than the SOTA method.
- Abstract(参考訳): Web3.0の急速な進化により、暗号通貨は分散金融の基盤となっている。
これらのデジタル資産は効率的で無防備な金融取引を可能にする一方で、その匿名性はマネーロンダリング、詐欺、その他の金融犯罪などの悪意ある行為も引き寄せている。
悪意のあるトランザクションを効果的に検出することは、Web 3.0エコシステムのセキュリティと整合性を維持するために不可欠である。
既存の悪意のあるトランザクション検出方法は大量のラベル付きデータに依存し、低い一般化に苦しむ。
ラベル効率が高く、一般化可能な悪意のあるトランザクション検出は、依然として難しい課題である。
本稿では,新たな悪意あるトランザクション検出手法であるShadowEyesを提案する。
具体的には、まず、悪意のあるトランザクションの表現として、TxGraphと呼ばれる一般化グラフ構造を提案し、悪意のあるアカウントとその隣人のインタラクション機能をキャプチャする。
そして、悪意あるトランザクションの進化をシミュレートして正のペアを生成するデータ拡張手法を慎重に設計する。
アカウントラベルの不足を軽減するために,ShadowEyesがラベルのないデータから識別的特徴を効果的に学習し,現実のシナリオにおける検出能力を向上するグラフコントラスト機構をさらに設計する。
公開データセットを用いて大規模な実験を行い,ShadowEyesの性能評価を行った。
その結果,4つの典型的なシナリオにおいて,SOTA(State-of-the-art)手法よりも優れていた。
具体的には、ゼロショット学習シナリオでは、ギャンブル取引を識別するためのF1スコアが76.98%に達し、SOTA法を12.05%上回る。
クロスプラットフォームの悪意のあるトランザクション検出のシナリオでは、ShadowEyesは、約90%のF1スコアを維持しており、SOTAメソッドよりも10%高い。
関連論文リスト
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
本稿では、金融データの異種グラフ表現に注意機構を応用したグラフニューラルネットワーク(GNN)を用いたクレジットカード不正検出手法を提案する。
提案モデルはグラフセージやFI-GRLなどのベンチマークアルゴリズムより優れており、AUC-PRが0.89、F1スコアが0.81である。
論文 参考訳(メタデータ) (2024-10-10T17:05:27Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoinは暗号通貨の主要なグローバルプラットフォームの一つとなり、金融エコシステムの多様化を促進する上で重要な役割を果たしている。
従来の規制手法は通常、機能エンジニアリングや大規模トランザクショングラフマイニングを通じて悪意のあるアカウントを検出する。
本稿では,TGC4Ethというトランザクショングラフ圧縮手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T02:21:20Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
グラフニューラルネットワーク(GNN)は不正検出に強い性能を示している。
ラベル付きデータは大規模な産業問題、特に不正検出には不十分である。
よりラベルのないデータを活用するための新しいグラフ事前学習戦略を提案する。
論文 参考訳(メタデータ) (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
アカウントのアイデンティティに関する事前推論を目的としたアイデンティティ推論は、ブロックチェーンセキュリティにおいて重要な役割を果たします。
本稿では,id推論タスクをグラフ分類パターンに変換するトランザクションサブグラフの観点から,ユーザの行動を解析するための新しい手法を提案する。
また、$textI2 textBGNN$という汎用的なエンドツーエンドグラフニューラルネットワークモデルを提案し、サブグラフを入力として受け入れ、トランザクションサブグラフパターンをアカウントアイデンティティにマッピングする関数を学ぶことができる。
論文 参考訳(メタデータ) (2021-04-14T00:15:38Z) - xFraud: Explainable Fraud Transaction Detection [18.43531904043454]
xFraud検出器は、受信トランザクションの正当性を効果的かつ効率的に予測することができる。
xFraudの解説者は、グラフから有意義で人間の理解可能な説明を生成することができる。
論文 参考訳(メタデータ) (2020-11-24T16:37:15Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
コールドスタート(Cold-start)は、新しいユーザの認証に検出システムが失敗したことを指す重要な問題である。
本稿では,各コンポーネントに固有の表現を可能にする異種情報ネットワーク (HIN) としてレビューシステムをモデル化する。
HINとグラフ誘導はカモフラージュ問題(本物のレビュー付き詐欺師)に対処するのに役立ち、これはコールドスタートと組み合わされた場合、すなわち真に最初のレビューを持つ新しい詐欺師がより深刻であることが示されている。
論文 参考訳(メタデータ) (2020-06-10T08:20:13Z) - Characterizing and Detecting Money Laundering Activities on the Bitcoin
Network [8.212945859699406]
我々はBitcoinネットワーク全体で発生した資金洗浄活動の展望を探る。
3年以上にわたって収集されたデータを用いて、トランザクショングラフを作成し、さまざまなグラフ特性を分析して、マネーロンダリングトランザクションと通常のトランザクションを区別します。
資金洗浄とレギュラー取引を分類するために,4種類のグラフ特徴に基づく分類器のセットを提案し,評価する。
論文 参考訳(メタデータ) (2019-12-27T11:34:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。