論文の概要: What can we learn from quantum convolutional neural networks?
- arxiv url: http://arxiv.org/abs/2308.16664v3
- Date: Fri, 06 Dec 2024 11:29:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:54:00.326837
- Title: What can we learn from quantum convolutional neural networks?
- Title(参考訳): 量子畳み込みニューラルネットワークから何が学べるか?
- Authors: Chukwudubem Umeano, Annie E. Paine, Vincent E. Elfving, Oleksandr Kyriienko,
- Abstract要約: 量子データを利用したモデルが、隠れた特徴写像を通してどのように解釈できるかを示す。
量子位相認識の高性能は、臨界点における鋭い特徴を持つ非常に効果的な基底を生成することから生じる。
我々の分析は量子データを扱う際の一般化の改善を強調している。
- 参考スコア(独自算出の注目度): 15.236546465767026
- License:
- Abstract: Quantum machine learning (QML) shows promise for analyzing quantum data. A notable example is the use of quantum convolutional neural networks (QCNNs), implemented as specific types of quantum circuits, to recognize phases of matter. In this approach, ground states of many-body Hamiltonians are prepared to form a quantum dataset and classified in a supervised manner using only a few labeled examples. However, this type of dataset and model differs fundamentally from typical QML paradigms based on feature maps and parameterized circuits. In this study, we demonstrate how models utilizing quantum data can be interpreted through hidden feature maps, where physical features are implicitly embedded via ground-state feature maps. By analyzing selected examples previously explored with QCNNs, we show that high performance in quantum phase recognition comes from generating a highly effective basis set with sharp features at critical points. The learning process adapts the measurement to create sharp decision boundaries. Our analysis highlights improved generalization when working with quantum data, particularly in the limited-shots regime. Furthermore, translating these insights into the domain of quantum scientific machine learning, we demonstrate that ground-state feature maps can be applied to fluid dynamics problems, expressing shock wave solutions with good generalization and proven trainability.
- Abstract(参考訳): 量子機械学習(QML)は、量子データを分析することを約束する。
注目すべき例として、量子畳み込みニューラルネットワーク(QCNN)が特定の種類の量子回路として実装され、物質相を認識する。
このアプローチでは、多体ハミルトニアンの基底状態は量子データセットを形成する準備ができ、いくつかのラベル付き例を用いて教師付き方法で分類される。
しかし、この種のデータセットとモデルは、特徴写像とパラメータ化回路に基づく典型的なQMLパラダイムと根本的に異なる。
本研究では、量子データを利用したモデルが隠れた特徴写像を通してどのように解釈され、物理的特徴が基底状態の特徴写像を介して暗黙的に埋め込まれるかを実証する。
従来QCNNで検討されていた選択された例を分析した結果,量子位相認識における高い性能は,臨界点における鋭い特徴を持つ高効率な基底を生成することに起因することがわかった。
学習プロセスは、測定値に適応して、鋭い決定境界を生成する。
我々の分析は、特に限定ショット方式において、量子データを扱う際の一般化の改善を強調している。
さらに、これらの知見を量子科学機械学習の領域に翻訳することで、基底状態の特徴写像が流体力学問題に適用可能であることを示す。
関連論文リスト
- ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
本稿では,教師付き学習タスクのためのテンソルネットワークにインスパイアされた浅部変分アンザツに基づく量子機械学習手法について検討する。
マルチスケールエンタングルメント再正規化アンサッツ (MERA) とツリーテンソルネットワーク (TTN) がパラメタライズド量子回路にインスパイアされた場合、テストセットの精度が$geq 98%に達する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
論文 参考訳(メタデータ) (2021-11-09T12:08:49Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。