Visualizing CoAtNet Predictions for Aiding Melanoma Detection
- URL: http://arxiv.org/abs/2205.10515v1
- Date: Sat, 21 May 2022 06:41:52 GMT
- Title: Visualizing CoAtNet Predictions for Aiding Melanoma Detection
- Authors: Daniel Kvak
- Abstract summary: This paper proposes a multi-class classification task using the CoAtNet architecture.
It achieves an overall precision of 0.901, recall 0.895, and AP 0.923, indicating high performance compared to other state-of-the-art networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Melanoma is considered to be the most aggressive form of skin cancer. Due to
the similar shape of malignant and benign cancerous lesions, doctors spend
considerably more time when diagnosing these findings. At present, the
evaluation of malignancy is performed primarily by invasive histological
examination of the suspicious lesion. Developing an accurate classifier for
early and efficient detection can minimize and monitor the harmful effects of
skin cancer and increase patient survival rates. This paper proposes a
multi-class classification task using the CoAtNet architecture, a hybrid model
that combines the depthwise convolution matrix operation of traditional
convolutional neural networks with the strengths of Transformer models and
self-attention mechanics to achieve better generalization and capacity. The
proposed multi-class classifier achieves an overall precision of 0.901, recall
0.895, and AP 0.923, indicating high performance compared to other
state-of-the-art networks.
Related papers
- Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
This study proposes a hybrid model that combines the advantages of Transformers and Convolutional Neural Networks (CNNs) to enhance classification performance.
For the GastroVision dataset, our proposed model demonstrates excellent performance with Precision, Recall, F1 score, Accuracy, and Matthews Correlation Coefficient (MCC) of 0.8320, 0.8386, 0.8324, 0.8386, and 0.8191, respectively.
arXiv Detail & Related papers (2024-08-20T11:05:32Z) - Hybrid Deep Learning Framework for Enhanced Melanoma Detection [3.004788114489393]
The primary objective of our study is to enhance the accuracy and efficiency of melanoma detection through an innovative hybrid approach.
We utilize the HAM10000 dataset to meticulously train the U-Net model, enabling it to precisely segment cancerous regions.
We employ the ISIC 2020 dataset to train the EfficientNet model, optimizing it for the binary classification of skin cancer.
arXiv Detail & Related papers (2024-07-16T04:58:47Z) - Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
A breast cancer image classification model algorithm combining deep learning and transfer learning is proposed.
Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0% in the test set, with a significantly improved classification accuracy compared to previous models.
arXiv Detail & Related papers (2024-04-14T12:09:47Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Efficient Out-of-Distribution Detection of Melanoma with Wavelet-based
Normalizing Flows [22.335623464185105]
Melanoma is a serious form of skin cancer with high mortality rate at later stages.
datasets are heavily imbalanced which complicates training current state-of-the-art supervised classification AI models.
We propose to use generative models to learn the benign data distribution and detect Out-of-Distribution (OOD) malignant images through density estimation.
arXiv Detail & Related papers (2022-08-09T09:57:56Z) - Multiple EffNet/ResNet Architectures for Melanoma Classification [3.047409448159345]
Melanoma is the most malignant skin tumor and usually cancerates from normal moles.
We propose a new melanoma classification model based on EffNet and Resnet.
Our model not only uses images within the same patient but also consider patient-level contextual information for better cancer prediction.
arXiv Detail & Related papers (2022-04-21T14:46:55Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.