Hybrid Deep Learning Framework for Enhanced Melanoma Detection
- URL: http://arxiv.org/abs/2408.00772v1
- Date: Tue, 16 Jul 2024 04:58:47 GMT
- Title: Hybrid Deep Learning Framework for Enhanced Melanoma Detection
- Authors: Peng Zhang, Divya Chaudhary,
- Abstract summary: The primary objective of our study is to enhance the accuracy and efficiency of melanoma detection through an innovative hybrid approach.
We utilize the HAM10000 dataset to meticulously train the U-Net model, enabling it to precisely segment cancerous regions.
We employ the ISIC 2020 dataset to train the EfficientNet model, optimizing it for the binary classification of skin cancer.
- Score: 3.004788114489393
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cancer is a leading cause of death worldwide, necessitating advancements in early detection and treatment technologies. In this paper, we present a novel and highly efficient melanoma detection framework that synergistically combines the strengths of U-Net for segmentation and EfficientNet for the classification of skin images. The primary objective of our study is to enhance the accuracy and efficiency of melanoma detection through an innovative hybrid approach. We utilized the HAM10000 dataset to meticulously train the U-Net model, enabling it to precisely segment cancerous regions. Concurrently, we employed the ISIC 2020 dataset to train the EfficientNet model, optimizing it for the binary classification of skin cancer. Our hybrid model demonstrates a significant improvement in performance, achieving a remarkable accuracy of 99.01% on the ISIC 2020 dataset. This exceptional result underscores the superiority of our approach compared to existing model structures. By integrating the precise segmentation capabilities of U-Net with the advanced classification prowess of EfficientNet, our framework offers a comprehensive solution for melanoma detection. The results of our extensive experiments highlight the high accuracy and reliability of our method in both segmentation and classification tasks. This indicates the potential of our hybrid approach to significantly enhance cancer detection, providing a robust tool for medical professionals in the early diagnosis and treatment of melanoma. We believe that our framework can set a new benchmark in the field of automated skin cancer detection, encouraging further research and development in this crucial area of medical imaging.
Related papers
- EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach [0.0]
This paper introduces a novel approach integrating Hybrid EfficientNet models with advanced attention mechanisms to enhance feature extraction and focus on critical image regions.
We evaluate the performance of our models across multiple magnification scales using publicly available hispathology datasets.
The results are validated using metrics such as accuracy, F1-score, precision, and recall, demonstrating the clinical potential of our model in improving diagnostic accuracy.
arXiv Detail & Related papers (2024-10-29T17:56:05Z) - Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Skin Cancer Segmentation and Classification Using Vision Transformer for
Automatic Analysis in Dermatoscopy-based Non-invasive Digital System [0.0]
This study introduces a groundbreaking approach to skin cancer classification, employing the Vision Transformer.
The Vision Transformer is a state-of-the-art deep learning architecture renowned for its success in diverse image analysis tasks.
The Segment Anything Model aids in precise segmentation of cancerous areas, attaining high IOU and Dice Coefficient.
arXiv Detail & Related papers (2024-01-09T11:22:54Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Visualizing CoAtNet Predictions for Aiding Melanoma Detection [0.0]
This paper proposes a multi-class classification task using the CoAtNet architecture.
It achieves an overall precision of 0.901, recall 0.895, and AP 0.923, indicating high performance compared to other state-of-the-art networks.
arXiv Detail & Related papers (2022-05-21T06:41:52Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.