Multi-Agent Coordination via Multi-Level Communication
- URL: http://arxiv.org/abs/2209.12713v2
- Date: Tue, 05 Nov 2024 15:05:38 GMT
- Title: Multi-Agent Coordination via Multi-Level Communication
- Authors: Ziluo Ding, Zeyuan Liu, Zhirui Fang, Kefan Su, Liwen Zhu, Zongqing Lu,
- Abstract summary: We propose a novel multi-level communication scheme, Sequential Communication (SeqComm)
In this paper, we propose a novel multi-level communication scheme, Sequential Communication (SeqComm)
- Score: 29.388570369796586
- License:
- Abstract: The partial observability and stochasticity in multi-agent settings can be mitigated by accessing more information about others via communication. However, the coordination problem still exists since agents cannot communicate actual actions with each other at the same time due to the circular dependencies. In this paper, we propose a novel multi-level communication scheme, Sequential Communication (SeqComm). SeqComm treats agents asynchronously (the upper-level agents make decisions before the lower-level ones) and has two communication phases. In the negotiation phase, agents determine the priority of decision-making by communicating hidden states of observations and comparing the value of intention, obtained by modeling the environment dynamics. In the launching phase, the upper-level agents take the lead in making decisions and then communicate their actions with the lower-level agents. Theoretically, we prove the policies learned by SeqComm are guaranteed to improve monotonically and converge. Empirically, we show that SeqComm outperforms existing methods in various cooperative multi-agent tasks.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
Current agent frameworks often suffer from dependencies on single-agent execution and lack robust inter- module communication.
We present a framework for training large language models as collaborative agents to enable coordinated behaviors in cooperative MARL.
A propagation network transforms broadcast intentions into teammate-specific communication messages, sharing relevant goals with designated teammates.
arXiv Detail & Related papers (2024-07-17T13:14:00Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
We introduce hybrid execution in multi-agent reinforcement learning (MARL)
MARL is a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time.
We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations.
arXiv Detail & Related papers (2022-10-12T14:58:32Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
arXiv Detail & Related papers (2022-05-21T14:11:33Z) - Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation [9.854975702211165]
We propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge.
First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations.
Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions.
arXiv Detail & Related papers (2022-03-06T07:42:43Z) - A Decentralized Communication Framework based on Dual-Level Recurrence
for Multi-Agent Reinforcement Learning [5.220940151628735]
We present a dual-level recurrent communication framework for multi-agent systems.
The first recurrence occurs in the communication sequence and is used to transmit communication data among agents.
The second recurrence is based on the time sequence and combines the historical observations for each agent.
arXiv Detail & Related papers (2022-02-22T01:36:59Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
arXiv Detail & Related papers (2020-06-11T14:07:57Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
We investigate whether competition for performance from an external, similar agent team could act as a social influence.
Our results show that an external competitive influence leads to improved accuracy and generalization, as well as faster emergence of communicative languages.
arXiv Detail & Related papers (2020-03-04T01:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.