Illuminating Salient Contributions in Neuron Activation with Attribution Equilibrium
- URL: http://arxiv.org/abs/2205.11109v2
- Date: Mon, 28 Oct 2024 04:37:46 GMT
- Title: Illuminating Salient Contributions in Neuron Activation with Attribution Equilibrium
- Authors: Woo-Jeoung Nam, Seong-Whan Lee,
- Abstract summary: We introduce Attribution Equilibrium, a novel method to decompose output predictions into fine-grained attributions.
We analyze conventional approaches to decision explanation and present a different perspective on the conservation of evidence.
- Score: 33.55397868171977
- License:
- Abstract: With the remarkable success of deep neural networks, there is a growing interest in research aimed at providing clear interpretations of their decision-making processes. In this paper, we introduce Attribution Equilibrium, a novel method to decompose output predictions into fine-grained attributions, balancing positive and negative relevance for clearer visualization of the evidence behind a network decision. We carefully analyze conventional approaches to decision explanation and present a different perspective on the conservation of evidence. We define the evidence as a gap between positive and negative influences among gradient-derived initial contribution maps. Then, we incorporate antagonistic elements and a user-defined criterion for the degree of positive attribution during propagation. Additionally, we consider the role of inactivated neurons in the propagation rule, thereby enhancing the discernment of less relevant elements such as the background. We conduct various assessments in a verified experimental environment with PASCAL VOC 2007, MS COCO 2014, and ImageNet datasets. The results demonstrate that our method outperforms existing attribution methods both qualitatively and quantitatively in identifying the key input features that influence model decisions.
Related papers
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Toward Understanding the Disagreement Problem in Neural Network Feature Attribution [0.8057006406834466]
neural networks have demonstrated their remarkable ability to discern intricate patterns and relationships from raw data.
Understanding the inner workings of these black box models remains challenging, yet crucial for high-stake decisions.
Our work addresses this confusion by investigating the explanations' fundamental and distributional behavior.
arXiv Detail & Related papers (2024-04-17T12:45:59Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Interpreting Deep Neural Networks with Relative Sectional Propagation by
Analyzing Comparative Gradients and Hostile Activations [37.11665902583138]
We propose a new attribution method, Relative Sectional Propagation (RSP), for decomposing the output predictions of Deep Neural Networks (DNNs)
We define hostile factor as an element that interferes with finding the attributions of the target and propagates it in a distinguishable way to overcome the non-suppressed nature of activated neurons.
Our method makes it possible to decompose the predictions of DNNs with clearer class-discriminativeness and detailed elucidations of activation neurons compared to the conventional attribution methods.
arXiv Detail & Related papers (2020-12-07T03:11:07Z) - Loss Bounds for Approximate Influence-Based Abstraction [81.13024471616417]
Influence-based abstraction aims to gain leverage by modeling local subproblems together with the 'influence' that the rest of the system exerts on them.
This paper investigates the performance of such approaches from a theoretical perspective.
We show that neural networks trained with cross entropy are well suited to learn approximate influence representations.
arXiv Detail & Related papers (2020-11-03T15:33:10Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z) - Understanding Negative Sampling in Graph Representation Learning [87.35038268508414]
We show that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance.
We propose Metropolis-Hastings (MCNS) to approximate the positive distribution with self-contrast approximation and accelerate negative sampling by Metropolis-Hastings.
We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation.
arXiv Detail & Related papers (2020-05-20T06:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.