ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses
- URL: http://arxiv.org/abs/2205.11124v1
- Date: Mon, 23 May 2022 08:32:09 GMT
- Title: ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses
- Authors: Arul Selvam Periyasamy, Catherine Capellen, Max Schwarz, and Sven
Behnke
- Abstract summary: We propose a fully-convolutional extension of the PoseCNN method, which densely predicts object translations and orientations.
This has several advantages such as improving the spatial resolution of the orientation predictions.
We demonstrate that our method achieves the same accuracy as PoseCNN on the challenging YCB-Video dataset.
- Score: 23.348510362258402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object pose estimation is a key perceptual capability in robotics. We propose
a fully-convolutional extension of the PoseCNN method, which densely predicts
object translations and orientations. This has several advantages such as
improving the spatial resolution of the orientation predictions -- useful in
highly-cluttered arrangements, significant reduction in parameters by avoiding
full connectivity, and fast inference. We propose and discuss several
aggregation methods for dense orientation predictions that can be applied as a
post-processing step, such as averaging and clustering techniques. We
demonstrate that our method achieves the same accuracy as PoseCNN on the
challenging YCB-Video dataset and provide a detailed ablation study of several
variants of our method. Finally, we demonstrate that the model can be further
improved by inserting an iterative refinement module into the middle of the
network, which enforces consistency of the prediction.
Related papers
- Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
Vehicle-to-Vehicle (V2V) channel state information (CSI) prediction is challenging and crucial for optimizing downstream tasks.
Traditional prediction approaches focus on four-dimensional (4D) CSI, which includes predictions over time, bandwidth, and antenna (TX and RX) space.
We propose a novel context-conditionedtemporal predictive learning method to capture dependencies within 4D CSI data.
arXiv Detail & Related papers (2024-09-16T04:15:36Z) - A positive feedback method based on F-measure value for Salient Object
Detection [1.9249287163937976]
This paper proposes a positive feedback method based on F-measure value for salient object detection (SOD)
Our proposed method takes an image to be detected and inputs it into several existing models to obtain their respective prediction maps.
Experimental results on five publicly available datasets show that our proposed positive feedback method outperforms the latest 12 methods in five evaluation metrics for saliency map prediction.
arXiv Detail & Related papers (2023-04-28T04:05:13Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
Neural Networks for Traffic Forecasting [2.088376060651494]
We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art method for short-term traffic forecasting.
We develop a scalable deep ensemble approach to quantify uncertainties for DCRNN.
We show that our generic and scalable approach outperforms the current state-of-the-art Bayesian and a number of other commonly used frequentist techniques.
arXiv Detail & Related papers (2022-04-04T16:10:55Z) - Generalizing Interactive Backpropagating Refinement for Dense Prediction [0.0]
We introduce a set of G-BRS layers that enable both global and localized refinement for a range of dense prediction tasks.
Our method can successfully generalize and significantly improve performance of existing pretrained state-of-the-art models with only a few clicks.
arXiv Detail & Related papers (2021-12-21T03:52:08Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Occlusion-Robust Object Pose Estimation with Holistic Representation [42.27081423489484]
State-of-the-art (SOTA) object pose estimators take a two-stage approach.
We develop a novel occlude-and-blackout batch augmentation technique.
We also develop a multi-precision supervision architecture to encourage holistic pose representation learning.
arXiv Detail & Related papers (2021-10-22T08:00:26Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.