論文の概要: ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting
- arxiv url: http://arxiv.org/abs/2205.13700v5
- Date: Tue, 17 Sep 2024 04:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 23:07:58.001257
- Title: ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting
- Title(参考訳): ES-GNN:エッジ分割によるホモフィリーを越えたグラフニューラルネットワークの一般化
- Authors: Jingwei Guo, Kaizhu Huang, Rui Zhang, Xinping Yi,
- Abstract要約: 本稿では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
本稿では,ES-GNNを非交叉グラフ記述問題の解とみなすことができることを示す。
- 参考スコア(独自算出の注目度): 32.69196871253339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Graph Neural Networks (GNNs) have achieved enormous success in multiple graph analytical tasks, modern variants mostly rely on the strong inductive bias of homophily. However, real-world networks typically exhibit both homophilic and heterophilic linking patterns, wherein adjacent nodes may share dissimilar attributes and distinct labels. Therefore, GNNs smoothing node proximity holistically may aggregate both task-relevant and irrelevant (even harmful) information, limiting their ability to generalize to heterophilic graphs and potentially causing non-robustness. In this work, we propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks. This essentially transfers the original graph into two subgraphs with the same node set but complementary edge sets dynamically. Given that, information propagation separately on these subgraphs and edge splitting are alternatively conducted, thus disentangling the task-relevant and irrelevant features. Theoretically, we show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem, which further illustrates our motivations and interprets the improved generalization beyond homophily. Extensive experiments over 11 benchmark and 1 synthetic datasets not only demonstrate the effective performance of ES-GNN but also highlight its robustness to adversarial graphs and mitigation of the over-smoothing problem.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、複数のグラフ解析タスクにおいて大きな成功を収めてきたが、現代の変種は、主にホモフィリーの強い帰納バイアスに依存している。
しかし、現実世界のネットワークは通常、ホモ親和性およびヘテロ親和性リンクパターンの両方を示しており、隣接ノードは異種属性と異なるラベルを共有することができる。
したがって、ノード近接を均等に平滑化するGNNは、タスク関連情報と非有害な情報の両方を集約し、ヘテロ親和性グラフに一般化する能力を制限し、非破壊性を引き起こす可能性がある。
本研究では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
これは本質的に、元のグラフを同じノードセットを持つ2つの部分グラフに変換するが、相補的なエッジセットは動的である。
これを踏まえ、これらのサブグラフとエッジ分割を別々に行うことで、タスク関連・無関係な特徴を解消する。
理論的には、我々のES-GNNは、そのモチベーションをさらに具現化し、ホモフィリーを超えて改良された一般化を解釈する非交叉グラフデノナイジング問題の解とみなすことができる。
11のベンチマークと1の合成データセットに対する大規模な実験は、ES-GNNの効果的な性能を示すだけでなく、逆グラフに対する頑健さと過度に滑らかな問題の緩和を強調している。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Learning heterophilious edge to drop: A general framework for boosting
graph neural networks [19.004710957882402]
本研究は, グラフ構造を最適化することにより, ヘテロフィリの負の影響を緩和することを目的とする。
LHEと呼ばれる構造学習手法を提案する。
emphLHEによるGNNの性能改善は, ホモフィリレベルの全スペクトルにわたる複数のデータセットで実証された。
論文 参考訳(メタデータ) (2022-05-23T14:07:29Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-03-26T00:35:36Z) - Graph Neural Networks with Heterophily [40.23690407583509]
我々は、ホモフィリーなグラフとヘテロフィリーなグラフのGNNを一般化するCPGNNと呼ばれる新しいフレームワークを提案する。
フレームワークの互換性行列を(純粋なホモフィリーを表す)同一性に置き換えると、GCNに還元されることを示す。
論文 参考訳(メタデータ) (2020-09-28T18:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。