論文の概要: Robust Constrained Multi-objective Evolutionary Algorithm based on
Polynomial Chaos Expansion for Trajectory Optimization
- arxiv url: http://arxiv.org/abs/2205.11387v1
- Date: Mon, 23 May 2022 15:33:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 15:18:08.723928
- Title: Robust Constrained Multi-objective Evolutionary Algorithm based on
Polynomial Chaos Expansion for Trajectory Optimization
- Title(参考訳): 軌道最適化のための多項カオス展開に基づくロバスト制約多目的進化アルゴリズム
- Authors: Yuji Takubo, Masahiro Kanazaki
- Abstract要約: 提案手法は,頑健な定式化をPCEを介して決定論的問題に書き換える。
ケーススタディとして,風の不確実性を考慮した超音速輸送(SST)の着陸軌道設計を最適化した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An integrated optimization method based on the constrained multi-objective
evolutionary algorithm (MOEA) and non-intrusive polynomial chaos expansion
(PCE) is proposed, which solves robust multi-objective optimization problems
under time-series dynamics. The constraints in such problems are difficult to
handle, not only because the number of the dynamic constraints is multiplied by
the discretized time steps but also because each of them is probabilistic. The
proposed method rewrites a robust formulation into a deterministic problem via
the PCE, and then sequentially processes the generated constraints in
population generation, trajectory generation, and evaluation by the MOEA. As a
case study, the landing trajectory design of supersonic transport (SST) with
wind uncertainty is optimized. Results demonstrate the quantitative influence
of the constraint values over the optimized solution sets and corresponding
trajectories, proposing robust flight controls.
- Abstract(参考訳): 制約付き多目的進化アルゴリズム (MOEA) と非線形多項式カオス展開 (PCE) に基づく統合最適化手法を提案し, 時系列力学における頑健な多目的最適化問題を解く。
このような問題の制約は、動的制約の数が離散化された時間ステップによって乗算されるだけでなく、それぞれが確率的であるため、処理が難しい。
提案手法では,ロバストな定式化をpceを介して決定論的問題に書き換え,生成した個体発生,軌道生成,moeaによる評価の制約を順次処理する。
本研究では,風の不確実性を考慮した超音速輸送(SST)の着陸軌道設計を最適化した。
その結果、最適化された解集合と対応する軌道に対する制約値の定量的影響を示し、堅牢な飛行制御を提案する。
関連論文リスト
- M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling [4.499391876093543]
ニューラルワークによってパラメータ化された多くの損失項の多目的最適化のための重み乗算器のオンライン選択に対処する。
本手法は乗算器レスであり,エポックの時間スケールで動作する。
また、既存の多目的ディープラーニング手法の過剰なメモリ要件と重い計算負担を回避する。
論文 参考訳(メタデータ) (2024-03-20T16:38:26Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
制約付き多目的最適化問題(CMOP)は、科学、工学、設計における現実世界の応用に及んでいる。
本稿では,目的関数と制約関数を分離する乗算器の交互方向法の原理に着想を得た,この種の進化的最適化フレームワークについて紹介する。
本研究の枠組みは,元の問題を2つのサブプロブレムの付加形式に再構成することで,未知の制約でCMOPに対処する。
論文 参考訳(メタデータ) (2024-01-02T00:38:20Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
シミュレーション予算の制限という観点から,混合変数に基づく新しい品質多様性手法を提案する。
提案手法は、複雑なシステム設計のための意思決定者にとって貴重なトレードオフを提供する。
論文 参考訳(メタデータ) (2023-09-11T14:29:47Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
我々は車載OCCにおけるスペクトル効率最適化手法を提案する。
我々は最適化問題をマルコフ決定プロセス(MDP)としてモデル化し、オンラインで適用可能なソリューションの利用を可能にする。
提案手法の性能を広範囲なシミュレーションにより検証し,提案手法の様々な変種とランダムな手法との比較を行った。
論文 参考訳(メタデータ) (2022-05-05T14:25:54Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
独立して通常は分散しているコンポーネントのシナリオについて研究する。
期待されるコストとその分散をトレードオフする問題を多目的に定式化する。
また,本手法は,木に散らばった最小限の問題に対して最適解の集合を計算するためにも有効であることを示す。
論文 参考訳(メタデータ) (2021-09-13T09:24:23Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。