論文の概要: Large Language Models as Co-Pilots for Causal Inference in Medical Studies
- arxiv url: http://arxiv.org/abs/2407.19118v1
- Date: Fri, 26 Jul 2024 22:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 19:40:49.328244
- Title: Large Language Models as Co-Pilots for Causal Inference in Medical Studies
- Title(参考訳): 医学における因果推論のコパイロットとしての大規模言語モデル
- Authors: Ahmed Alaa, Rachael V. Phillips, Emre Kıcıman, Laura B. Balzer, Mark van der Laan, Maya Petersen,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を共同パイロットツールとして活用し,因果推論の有効性を損なう研究設計上の欠陥の同定を支援する。
本研究では,LLMの概念的枠組みを,様々な分野のドメイン知識を符号化する因果コパイロットとして提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The validity of medical studies based on real-world clinical data, such as observational studies, depends on critical assumptions necessary for drawing causal conclusions about medical interventions. Many published studies are flawed because they violate these assumptions and entail biases such as residual confounding, selection bias, and misalignment between treatment and measurement times. Although researchers are aware of these pitfalls, they continue to occur because anticipating and addressing them in the context of a specific study can be challenging without a large, often unwieldy, interdisciplinary team with extensive expertise. To address this expertise gap, we explore the use of large language models (LLMs) as co-pilot tools to assist researchers in identifying study design flaws that undermine the validity of causal inferences. We propose a conceptual framework for LLMs as causal co-pilots that encode domain knowledge across various fields, engaging with researchers in natural language interactions to provide contextualized assistance in study design. We provide illustrative examples of how LLMs can function as causal co-pilots, propose a structured framework for their grounding in existing causal inference frameworks, and highlight the unique challenges and opportunities in adapting LLMs for reliable use in epidemiological research.
- Abstract(参考訳): 実際の臨床データに基づく医学研究の妥当性は、医学的介入に関する因果的な結論を導くのに必要な重要な仮定に依存する。
多くの公表された研究は、これらの仮定に反し、残差の相違、選択バイアス、治療と測定時間の相違などのバイアスを伴うため、欠陥がある。
研究者はこれらの落とし穴を知ってはいるものの、特定の研究の文脈でそれらを予測し、対処することは、広範囲の専門知識を持つ大きな、しばしば扱いにくい、学際的なチームなしでは困難である可能性があるため、引き続き起こる。
この専門的ギャップに対処するため,大言語モデル(LLM)を共同操縦ツールとして活用し,因果推論の妥当性を損なう研究設計上の欠陥の同定を支援する。
本研究では,LLMの概念的枠組みを,様々な分野のドメイン知識を符号化する因果コパイロットとして提案する。
本稿では, LLM を因果的コパイロットとして機能させる方法の具体例を示し, 既存の因果的推論フレームワークを基盤とした構造的枠組みを提案し, 疫学研究で信頼性の高い利用に LLM を適用する上でのユニークな課題と機会を強調した。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering [14.198330378235632]
我々は,3つのジェネラリストと3つの専門的なバイオメディカルサブドメインにおいて,22のデータセットに関する大規模な実験研究を行うために,複数選択と抽象質問応答を用いた。
15個のLLMの性能の多面的解析により、リコールや理解の向上につながる命令チューニングなどの成功要因が明らかになった。
最近提案されたドメイン適応モデルには十分な知識が欠如している可能性があるが、収集した医療知識データセットを直接微調整することは、奨励的な結果を示している。
我々は、必要な知識を単に思い出し、提示された知識と統合するモデルの能力の間に大きなギャップがあることを明らかにする、スキル指向手動エラー解析で定量的結果を補完する。
論文 参考訳(メタデータ) (2024-06-06T02:43:21Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Causal Machine Learning for Healthcare and Precision Medicine [16.846051073534966]
因果機械学習(CML)は、医療で人気が高まっている。
臨床意思決定支援システムの様々な側面に因果推論を組み込む方法について検討する。
論文 参考訳(メタデータ) (2022-05-23T15:45:21Z) - An introduction to causal reasoning in health analytics [2.199093822766999]
従来の機械学習と統計的アプローチで発生する可能性のある欠点のいくつかを強調して、観測データを分析します。
一般的な機械学習問題に対処するための因果推論の応用を実演する。
論文 参考訳(メタデータ) (2021-05-10T20:25:56Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。