論文の概要: Constrained Monotonic Neural Networks
- arxiv url: http://arxiv.org/abs/2205.11775v4
- Date: Wed, 31 May 2023 18:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 02:01:26.578249
- Title: Constrained Monotonic Neural Networks
- Title(参考訳): 制約付き単調ニューラルネットワーク
- Authors: Davor Runje, Sharath M. Shankaranarayana
- Abstract要約: 金融や医療といった多くの重要な分野におけるニューラルネットワークの採用は、その予測を説明する必要性によって妨げられている。
モノトニック性制約は、現実世界のシナリオで最も要求された特性の1つである。
我々は、$mathbbRn$ のコンパクト部分集合上の任意の連続単調関数を近似できることを示した。
- 参考スコア(独自算出の注目度): 0.685316573653194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wider adoption of neural networks in many critical domains such as finance
and healthcare is being hindered by the need to explain their predictions and
to impose additional constraints on them. Monotonicity constraint is one of the
most requested properties in real-world scenarios and is the focus of this
paper. One of the oldest ways to construct a monotonic fully connected neural
network is to constrain signs on its weights. Unfortunately, this construction
does not work with popular non-saturated activation functions as it can only
approximate convex functions. We show this shortcoming can be fixed by
constructing two additional activation functions from a typical unsaturated
monotonic activation function and employing each of them on the part of
neurons. Our experiments show this approach of building monotonic neural
networks has better accuracy when compared to other state-of-the-art methods,
while being the simplest one in the sense of having the least number of
parameters, and not requiring any modifications to the learning procedure or
post-learning steps. Finally, we prove it can approximate any continuous
monotone function on a compact subset of $\mathbb{R}^n$.
- Abstract(参考訳): 金融や医療といった多くの重要な領域におけるニューラルネットワークの採用は、予測を説明し、追加の制約を加える必要性によって妨げられている。
モノトニック性制約は現実シナリオにおいて最も要求される特性の1つであり,本論文の焦点となっている。
モノトニック完全連結ニューラルネットワークを構築する最も古い方法の1つは、その重みの標識を拘束することである。
残念ながら、この構成は、凸関数を近似できるだけであるため、一般的な非飽和活性化関数では機能しない。
この欠点は、典型的な不飽和単調活性化関数から2つの追加の活性化関数を構築し、それぞれをニューロンの一部に使用することで解決できることを示した。
実験の結果, 単調ニューラルネットワークの構築は, 他の最先端手法と比較して精度が良く, 最小数のパラメータを持つという意味では最も単純であり, 学習手順や学習後のステップの変更は不要であることがわかった。
最後に、$\mathbb{R}^n$ のコンパクト部分集合上の任意の連続単調関数を近似できることを示す。
関連論文リスト
- 1-Lipschitz Neural Networks are more expressive with N-Activations [19.858602457988194]
システムの入力に対する小さな変更は、出力に大きな変更をもたらすべきではない。
MaxMinのようなよく使われるアクティベーション関数は、不必要に表現可能な関数のクラスを制限する。
現在普及しているアクティベーション関数よりも明らかに表現力が高い新しいN-アクティベーション関数を導入する。
論文 参考訳(メタデータ) (2023-11-10T15:12:04Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
サブモジュール関数と変種は、多様性とカバレッジを特徴付ける能力を通じて、データ選択と要約のための重要なツールとして登場した。
本稿では,モノトーンおよび非モノトーン部分モジュラー関数のためのフレキシブルニューラルネットワークであるFLEXSUBNETを提案する。
論文 参考訳(メタデータ) (2022-10-20T06:00:45Z) - Benefits of Overparameterized Convolutional Residual Networks: Function
Approximation under Smoothness Constraint [48.25573695787407]
大規模なConvResNetは関数の値から目的関数を近似できるだけでなく、一階スムーズ性も十分に発揮できることを示す。
我々の理論は、実際にディープ・ワイド・ネットワークを使うことの利点を部分的に正当化している。
論文 参考訳(メタデータ) (2022-06-09T15:35:22Z) - Learning a Single Neuron with Bias Using Gradient Descent [53.15475693468925]
単一ニューロンをバイアス項で学習する基本的な問題について検討する。
これはバイアスのないケースとは大きく異なり、より難しい問題であることを示す。
論文 参考訳(メタデータ) (2021-06-02T12:09:55Z) - Certified Monotonic Neural Networks [15.537695725617576]
本稿では,混合整数線形計画問題の解法により,一般のピースワイド線形ニューラルネットワークの単調性を証明することを提案する。
我々のアプローチでは、重み空間に対する人間設計の制約を必要とせず、より正確な近似が得られる。
論文 参考訳(メタデータ) (2020-11-20T04:58:13Z) - No one-hidden-layer neural network can represent multivariable functions [0.0]
ニューラルネットワークによる関数近似において、各隠れ層ユニットのパラメータを最適化することにより、入力データセットを出力インデックスにマッピングする。
整列線形単位(ReLU)アクティベーション関数を持つ一隠れ層ニューラルネットワークの連続バージョンを構築することにより、パラメータとその第2の導関数に制約を与える。
論文 参考訳(メタデータ) (2020-06-19T06:46:54Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z) - Counterexample-Guided Learning of Monotonic Neural Networks [32.73558242733049]
単調性制約に注目するが、これは一般的であり、特定の入力特徴の値が増加するにつれて関数の出力が増加することが要求される。
本研究では,予測時の単調性制約を確実に強制する逆例誘導手法を開発した。
深層学習の帰納バイアスとして単調性を用いる手法も提案する。
論文 参考訳(メタデータ) (2020-06-16T01:04:26Z) - On Sharpness of Error Bounds for Multivariate Neural Network
Approximation [0.0]
この論文は、このようなリッジ関数の和による最良の非線形近似を扱う。
誤差境界は滑らかさのモジュライで表される。
論文 参考訳(メタデータ) (2020-04-05T14:00:52Z) - Exact Hard Monotonic Attention for Character-Level Transduction [76.66797368985453]
非単調なソフトアテンションを用いたニューラルシークエンス・ツー・シーケンスモデルは、しばしば一般的な単調モデルよりも優れていることを示す。
我々は、厳密な単調性を強制し、トランスデューサの学習中に協調して潜時アライメントを学習するハードアテンションシーケンス・ツー・シーケンス・モデルを開発した。
論文 参考訳(メタデータ) (2019-05-15T17:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。