Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks
- URL: http://arxiv.org/abs/2110.10489v1
- Date: Wed, 20 Oct 2021 11:03:17 GMT
- Title: Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks
- Authors: Johan J\"onemo, David Abramian, Anders Eklund
- Abstract summary: We use resting state derivatives from 1,112 subjects in ABIDE preprocessed to train a 3D convolutional neural network (CNN) to perform the classification.
Our results show that augmentation only provide minor improvements to the test accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying subjects as healthy or diseased using neuroimaging data has
gained a lot of attention during the last 10 years. Here we apply deep learning
to derivatives from resting state fMRI data, and investigate how different 3D
augmentation techniques affect the test accuracy. Specifically, we use resting
state derivatives from 1,112 subjects in ABIDE preprocessed to train a 3D
convolutional neural network (CNN) to perform the classification. Our results
show that augmentation only provide minor improvements to the test accuracy.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs [0.0]
This work proposes an algorithm for fMRI data analysis for the classification of ADHD disorders.
By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the accuracy of 3D CNN classification of brain disorders.
arXiv Detail & Related papers (2022-05-24T11:39:11Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
arXiv Detail & Related papers (2021-04-04T20:30:14Z) - Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
data using 3D Convolutional Neural Networks [0.45077088620792216]
Age prediction based on Magnetic Resonance Imaging (MRI) data of the brain is a biomarker to quantify the progress of brain diseases and aging.
Current approaches rely on preparing the data with multiple preprocessing steps, such as registering voxels to a standardized brain atlas.
Here we describe a 3D Convolutional Neural Network (CNN) based on the ResNet architecture being trained on raw, non-registered T 1 -weighted MRI data.
arXiv Detail & Related papers (2021-03-22T09:48:34Z) - MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
architectures [0.0]
This work studies 3D encoder-decoder architectures trained with patch-based techniques to reduce memory consumption and decrease the effect of unbalanced data.
We also introduce voxel-wise uncertainty information, both epistemic and aleatoric using test-time dropout (TTD) and data-augmentation (TTA) respectively.
The model and uncertainty estimation measurements proposed in this work have been used in the BraTS'20 Challenge for task 1 and 3 regarding tumor segmentation and uncertainty estimation.
arXiv Detail & Related papers (2020-12-30T19:28:53Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Brain Tumor Segmentation using 3D-CNNs with Uncertainty Estimation [0.0]
This work proposes a 3D encoder-decoder architecture, based on V-Net citevnet which is trained with patching techniques to reduce memory consumption.
Uncertainty maps can provide extra information to expert neurologists, useful for detecting when the model is not confident on the provided segmentation.
arXiv Detail & Related papers (2020-09-24T10:50:12Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.