論文の概要: Graph Convolutional Reinforcement Learning for Collaborative Queuing
Agents
- arxiv url: http://arxiv.org/abs/2205.12009v1
- Date: Tue, 24 May 2022 11:53:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 00:16:02.401421
- Title: Graph Convolutional Reinforcement Learning for Collaborative Queuing
Agents
- Title(参考訳): 協調処理エージェントのためのグラフ畳み込み強化学習
- Authors: Hassan Fawaz, Julien Lesca, Pham Tran Anh Quang, J\'er\'emie Leguay,
Djamal Zeghlache, and Paolo Medagliani
- Abstract要約: DGNとして知られる新しいグラフ畳み込み型マルチエージェント強化学習手法を提案する。
DGNベースのアプローチは,すべてのシナリオにおいて厳格なスループットと遅延要件を満たすことを示す。
- 参考スコア(独自算出の注目度): 6.3120870639037285
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we explore the use of multi-agent deep learning as well as
learning to cooperate principles to meet stringent service level agreements, in
terms of throughput and end-to-end delay, for a set of classified network
flows. We consider agents built on top of a weighted fair queuing algorithm
that continuously set weights for three flow groups: gold, silver, and bronze.
We rely on a novel graph-convolution based, multi-agent reinforcement learning
approach known as DGN. As benchmarks, we propose centralized and distributed
deep Q-network approaches and evaluate their performances in different network,
traffic, and routing scenarios, highlighting the effectiveness of our proposals
and the importance of agent cooperation. We show that our DGN-based approach
meets stringent throughput and delay requirements across all scenarios.
- Abstract(参考訳): 本稿では,ネットワークフローの分類において,スループットとエンドツーエンド遅延の観点から,マルチエージェント深層学習の利用と,厳密なサービスレベルの合意を満たすための原則の連携について検討する。
我々は,金,銀,青銅の3つのフローグループに対して,連続的に重み付けを行う重み付きフェアキューイングアルゴリズムの上にエージェントを配置する。
我々はDGNとして知られる新しいグラフ畳み込みに基づくマルチエージェント強化学習アプローチに依存している。
ベンチマークとして,集中型・分散型qネットワークアプローチを提案し,異なるネットワーク,トラフィック,ルーティングシナリオにおける性能評価を行い,提案の有効性とエージェント協調の重要性を強調した。
DGNベースのアプローチは,すべてのシナリオにおいて厳格なスループットと遅延要件を満たすことを示す。
関連論文リスト
- Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
画像テキストマッチングのための新しいDeep Boosting Learning (DBL)アルゴリズムを提案する。
アンカーブランチは、まずデータプロパティに関する洞察を提供するために訓練される。
ターゲットブランチは、一致したサンプルと未一致のサンプルとの相対距離をさらに拡大するために、より適応的なマージン制約を同時に課される。
論文 参考訳(メタデータ) (2024-04-28T08:44:28Z) - On the dynamics of multi agent nonlinear filtering and learning [2.206852421529135]
マルチエージェントシステムは、ダイナミックスを求める分散コンセンサスを通じて、高度に複雑な学習課題を達成することを目的としている。
本稿では非線形フィルタリング/学習力学を用いたマルチエージェントネットワークシステムの挙動について検討する。
論文 参考訳(メタデータ) (2023-09-07T08:39:53Z) - Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning [2.9904113489777826]
本稿では,効率的な情報伝達のためのマルチエージェント強化学習(MARL)手法を提案する。
本稿では,各エージェントが個別にメッセージ転送を決定するための情報発信のための部分観測可能なゲーム(POSG)を提案する。
実験の結果,既存の手法よりも訓練済みの方針が優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-25T21:30:16Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
本稿では,マルチエージェント領域における行動クラスタの発見のためのモデルに依存しない手法を提案する。
我々のフレームワークはエージェントの基盤となる学習アルゴリズムを前提とせず、潜伏状態やモデルへのアクセスを必要とせず、完全にオフラインで観察データを使って訓練することができる。
論文 参考訳(メタデータ) (2022-06-17T23:07:33Z) - Graph Convolutional Value Decomposition in Multi-Agent Reinforcement
Learning [9.774412108791218]
深層強化学習における値関数分解のための新しい枠組みを提案する。
特に、エージェントのチームは完全有向グラフのノードの集合であると考えている。
我々は,チーム状態-行動値関数を各エージェント毎の観察-行動値関数に分解する混合GNNモジュールを導入し,グローバルチーム報酬の分数で各エージェントに明示的なクレジット割り当てを行う。
論文 参考訳(メタデータ) (2020-10-09T18:01:01Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z) - Coagent Networks Revisited [10.45819881530349]
共役ネットワークは、強化学習環境で行動を起こすために協力するエージェントの任意のネットワークの概念を定式化する。
まず、共役ネットワークに該当する多種多様な事例について統一的な視点を提供する。
我々は、新しい、直感的な実行パスのアイデアによって実現された、Coagentネットワークにおける実行のルールを形式化する。
論文 参考訳(メタデータ) (2020-01-28T17:31:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。