論文の概要: Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2308.16198v3
- Date: Wed, 21 Feb 2024 07:11:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 20:42:21.916725
- Title: Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning
- Title(参考訳): グラフベースマルチエージェント強化学習による協調的情報伝達
- Authors: Raffaele Galliera, Kristen Brent Venable, Matteo Bassani, Niranjan
Suri
- Abstract要約: 本稿では,効率的な情報伝達のためのマルチエージェント強化学習(MARL)手法を提案する。
本稿では,各エージェントが個別にメッセージ転送を決定するための情報発信のための部分観測可能なゲーム(POSG)を提案する。
実験の結果,既存の手法よりも訓練済みの方針が優れていることがわかった。
- 参考スコア(独自算出の注目度): 2.9904113489777826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient information dissemination is crucial for supporting critical
operations across domains like disaster response, autonomous vehicles, and
sensor networks. This paper introduces a Multi-Agent Reinforcement Learning
(MARL) approach as a significant step forward in achieving more decentralized,
efficient, and collaborative information dissemination. We propose a Partially
Observable Stochastic Game (POSG) formulation for information dissemination
empowering each agent to decide on message forwarding independently, based on
the observation of their one-hop neighborhood. This constitutes a significant
paradigm shift from heuristics currently employed in real-world broadcast
protocols. Our novel approach harnesses Graph Convolutional Reinforcement
Learning and Graph Attention Networks (GATs) with dynamic attention to capture
essential network features. We propose two approaches, L-DyAN and HL-DyAN,
which differ in terms of the information exchanged among agents. Our
experimental results show that our trained policies outperform existing
methods, including the state-of-the-art heuristic, in terms of network coverage
as well as communication overhead on dynamic networks of varying density and
behavior.
- Abstract(参考訳): 災害対応、自動運転車、センサーネットワークなど、ドメイン間の重要な操作を支援するために、効果的な情報伝達が不可欠である。
本稿では,より分散化され,効率的で協調的な情報伝達を実現するために,MARL(Multi-Agent Reinforcement Learning)アプローチを提案する。
本研究では,各エージェントがメッセージフォワードを独立に決定できる情報配信のためのPOSG(Partially Observable Stochastic Game)の定式化を提案する。
これは、現在現実世界の放送プロトコルで使われているヒューリスティックスから重要なパラダイムシフトを構成する。
我々の新しいアプローチは、グラフ畳み込み強化学習とグラフ注意ネットワーク(GAT)を利用して、重要なネットワーク特徴を捉える。
L-DyAN と HL-DyAN の2つの手法を提案する。
実験の結果,ネットワークカバレッジの面では最先端のヒューリスティックや,密度や動作の異なる動的ネットワーク上での通信オーバーヘッドなど,既存の手法よりもトレーニングされたポリシの方が優れていた。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
離散化された部分観測可能なマルコフ決定過程(Dec-POMDP)における動的ネットワークブリッジ問題について定式化する。
グラフ畳み込み強化学習(DGN)に基づく問題に対するマルチエージェント強化学習(MARL)アプローチを提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ベースラインと比較した。
論文 参考訳(メタデータ) (2024-04-02T01:45:03Z) - Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph
Reinforcement Learning [42.175067773481416]
我々は,空間的時間的相関を捉えるために,環境観測性を改善した新しい分散制御アーキテクチャを設計する。
具体的には,道路ネットワークに収集された非構造データから相関関連情報を抽出するトポロジ対応情報集約戦略を開発する。
拡散畳み込みモジュールが開発され、新しいMARLアルゴリズムが作成され、エージェントにグラフ学習の能力を与える。
論文 参考訳(メタデータ) (2023-11-07T06:43:15Z) - Decentralized Learning over Wireless Networks: The Effect of Broadcast
with Random Access [56.91063444859008]
本稿では,D-SGDのコンバージェンス性能に及ぼす放送送信と確率的ランダムアクセスポリシーの影響について検討する。
この結果から,アクセス確率を最適化し,期待されるリンク数の最大化が,システム収束を加速するための極めて効果的な戦略であることが示唆された。
論文 参考訳(メタデータ) (2023-05-12T10:32:26Z) - Attention Based Feature Fusion For Multi-Agent Collaborative Perception [4.120288148198388]
グラフアテンションネットワーク(GAT)の形での中間的協調認識ソリューションを提案する。
提案手法は,複数の連結エージェント間で交換される中間表現を融合するアテンションベースのアグリゲーション戦略を開発する。
このアプローチは、チャネルレベルと空間レベルの中間特徴写像における重要な領域を適応的に強調することにより、オブジェクト検出精度が向上する。
論文 参考訳(メタデータ) (2023-05-03T12:06:11Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
本稿では,階層型グラフ再帰ネットワーク(HGRN)と呼ばれる新しいネットワーク構造を提案する。
以上の技術に基づいて,Soft-HGRNと呼ばれる値に基づくMADRLアルゴリズムと,SAC-HRGNというアクタクリティカルな変種を提案する。
論文 参考訳(メタデータ) (2021-09-05T09:51:25Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
グラフニューラルネットワーク(GNN)を用いたアドホックネットワークにおけるデータ分散のためのタスク非依存,分散化,低レイテンシ手法を提案する。
当社のアプローチは、グローバル状態情報に基づいたマルチエージェントアルゴリズムを各ロボットで利用可能にすることで機能させます。
我々は,情報の平均年齢を報酬関数として強化学習を通じて分散gnn通信政策を訓練し,タスク固有の報酬関数と比較してトレーニング安定性が向上することを示す。
論文 参考訳(メタデータ) (2021-03-08T21:48:55Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Learning Multi-Agent Coordination through Connectivity-driven
Communication [7.462336024223669]
人工マルチエージェントシステムでは、エージェントのコミュニケーションスキルに基づいて協調的なポリシーを学習することができる。
我々は、深い強化学習アプローチであるコネクティビティ駆動通信(CDC)を提案する。
CDCは効果的な協調政策を学習でき、協調ナビゲーションタスクにおいて競合する学習アルゴリズムをオーバーパフォーマンスさせることができる。
論文 参考訳(メタデータ) (2020-02-12T20:58:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。