Is quantum computing green? An estimate for an energy-efficiency quantum
advantage
- URL: http://arxiv.org/abs/2205.12092v2
- Date: Tue, 22 Nov 2022 09:07:14 GMT
- Title: Is quantum computing green? An estimate for an energy-efficiency quantum
advantage
- Authors: Daniel Jaschke and Simone Montangero
- Abstract summary: We show that the green quantum advantage threshold depends on (i) the quality of the experimental quantum gates and (ii) the entanglement generated in the QPU.
We compute the green quantum advantage threshold for a few paradigmatic examples in terms of algorithms and hardware platforms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum advantage threshold determines when a quantum processing unit
(QPU) is more efficient with respect to classical computing hardware in terms
of algorithmic complexity. The "green" quantum advantage threshold $-$ based on
a comparison of energetic efficiency between the two $-$ is going to play a
fundamental role in the comparison between quantum and classical hardware.
Indeed, its characterization would enable better decisions on energy-saving
strategies, e.g. for distributing the workload in hybrid quantum-classical
algorithms. Here, we show that the green quantum advantage threshold crucially
depends on (i) the quality of the experimental quantum gates and (ii) the
entanglement generated in the QPU. Indeed, for NISQ hardware and algorithms
requiring a moderate amount of entanglement, a classical tensor network
emulation can be more energy-efficient at equal final state fidelity than
quantum computation. We compute the green quantum advantage threshold for a few
paradigmatic examples in terms of algorithms and hardware platforms, and
identify algorithms with a power-law decay of singular values of bipartitions
$-$ with power-law exponent $\alpha \lesssim 1$ $-$ as the green quantum
advantage threshold in the near future.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Alleviating the quantum Big-$M$ problem [0.237499051649312]
Classically known as the "Big-$M$" problem, it affects the physical energy scale.
We take a systematic, encompassing look at the quantum big-$M$ problem, revealing NP-hardness in finding the optimal $M$.
We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks.
arXiv Detail & Related papers (2023-07-19T18:00:05Z) - Schrödinger as a Quantum Programmer: Estimating Entanglement via Steering [3.187381965457262]
We develop a quantum algorithm that tests for and quantifies the separability of a general bipartite state by using the quantum steering effect.
Our findings provide a meaningful connection between steering, entanglement, quantum algorithms, and quantum computational complexity theory.
arXiv Detail & Related papers (2023-03-14T13:55:06Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
We introduce an iterative quantum optimization algorithm to solve optimization problems.
We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits.
We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement.
arXiv Detail & Related papers (2023-03-09T18:59:37Z) - The Role of Entanglement in Quantum-Relaxation Based Optimization
Algorithms [4.00916638804083]
Quantum Random Access Code (QRAC) encodes multiple variables of binary optimization in a single qubit.
Our results suggest that QRAO not only can scale solvable instances of binary optimization problems with limited quantum computers but also can benefit from quantum entanglement.
arXiv Detail & Related papers (2023-02-01T13:24:51Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.