Quantum-Enhanced Greedy Combinatorial Optimization Solver
- URL: http://arxiv.org/abs/2303.05509v2
- Date: Fri, 17 Nov 2023 01:28:51 GMT
- Title: Quantum-Enhanced Greedy Combinatorial Optimization Solver
- Authors: Maxime Dupont, Bram Evert, Mark J. Hodson, Bhuvanesh Sundar, Stephen
Jeffrey, Yuki Yamaguchi, Dennis Feng, Filip B. Maciejewski, Stuart Hadfield,
M. Sohaib Alam, Zhihui Wang, Shon Grabbe, P. Aaron Lott, Eleanor G. Rieffel,
Davide Venturelli, Matthew J. Reagor
- Abstract summary: We introduce an iterative quantum optimization algorithm to solve optimization problems.
We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits.
We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement.
- Score: 12.454028945013924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimization is a broadly attractive area for potential quantum
advantage, but no quantum algorithm has yet made the leap. Noise in quantum
hardware remains a challenge, and more sophisticated quantum-classical
algorithms are required to bolster their performance. Here, we introduce an
iterative quantum heuristic optimization algorithm to solve combinatorial
optimization problems. The quantum algorithm reduces to a classical greedy
algorithm in the presence of strong noise. We implement the quantum algorithm
on a programmable superconducting quantum system using up to 72 qubits for
solving paradigmatic Sherrington-Kirkpatrick Ising spin glass problems. We find
the quantum algorithm systematically outperforms its classical greedy
counterpart, signaling a quantum enhancement. Moreover, we observe an absolute
performance comparable with a state-of-the-art semidefinite programming method.
Classical simulations of the algorithm illustrate that a key challenge to
reaching quantum advantage remains improving the quantum device
characteristics.
Related papers
- Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
We explore the potential of quantum algorithms to resolve the problems in particle physics experiments.
We consider top quark pair production in the fully hadronic channel at the Large Hadron Collider.
We show that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms.
arXiv Detail & Related papers (2024-10-29T18:00:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - The Role of Entanglement in Quantum-Relaxation Based Optimization
Algorithms [4.00916638804083]
Quantum Random Access Code (QRAC) encodes multiple variables of binary optimization in a single qubit.
Our results suggest that QRAO not only can scale solvable instances of binary optimization problems with limited quantum computers but also can benefit from quantum entanglement.
arXiv Detail & Related papers (2023-02-01T13:24:51Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
We show the largest-to-date execution of a quantum optimization algorithm that preserves constraints on quantum hardware.
We execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159.
We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
arXiv Detail & Related papers (2022-06-13T16:21:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.