論文の概要: Federated singular value decomposition for high dimensional data
- arxiv url: http://arxiv.org/abs/2205.12109v1
- Date: Tue, 24 May 2022 14:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 20:18:18.922639
- Title: Federated singular value decomposition for high dimensional data
- Title(参考訳): 高次元データに対するフェデレーション特異値分解
- Authors: Anne Hartebrodt, Richard R\"ottger and David B. Blumenthal
- Abstract要約: Federated Learning(FL)は、古典的なクラウドベースの機械学習に代わるプライバシ意識を持つものだ。
FLでは、センシティブなデータはデータサイロに残され、集約されたパラメータのみが交換される。
本稿では,ゲノムワイド・アソシエーション研究におけるプライバシ関連および計算上の要件に適合する,フェデレーション付き特異値分解アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.5699340339565095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is emerging as a privacy-aware alternative to
classical cloud-based machine learning. In FL, the sensitive data remains in
data silos and only aggregated parameters are exchanged. Hospitals and research
institutions which are not willing to share their data can join a federated
study without breaching confidentiality. In addition to the extreme sensitivity
of biomedical data, the high dimensionality poses a challenge in the context of
federated genome-wide association studies (GWAS). In this article, we present a
federated singular value decomposition (SVD) algorithm, suitable for the
privacy-related and computational requirements of GWAS. Notably, the algorithm
has a transmission cost independent of the number of samples and is only weakly
dependent on the number of features, because the singular vectors associated
with the samples are never exchanged and the vectors associated with the
features only for a fixed number of iterations. Although motivated by GWAS, the
algorithm is generically applicable for both horizontally and vertically
partitioned data.
- Abstract(参考訳): Federated Learning(FL)は、古典的なクラウドベースの機械学習に代わるプライバシ意識を持つものとして登場しつつある。
flでは、センシティブなデータはデータサイロに残され、集約されたパラメータのみが交換される。
データを共有しない病院や研究機関は、機密性に違反することなく連合研究に参加することができる。
生物医学データの過度な感度に加えて、高次元性は、連合ゲノムワイド・アソシエーション研究(GWAS)の文脈において課題となる。
本稿では,gwasのプライバシ関連および計算要件に適したフェデレーション特異値分解(svd)アルゴリズムを提案する。
特に、このアルゴリズムは、サンプル数に依存しない伝送コストを有しており、サンプルに関連する特異ベクトルは交換されず、特徴に付随するベクトルは一定数の反復でのみ交換されるため、特徴数に弱くのみ依存する。
gwasに動機づけられているが、アルゴリズムは水平分割データと垂直分割データの両方に適用できる。
関連論文リスト
- A Stochastic Optimization Framework for Private and Fair Learning From Decentralized Data [14.748203847227542]
プライベート・フェア・フェデレーション・ラーニング(FL)のための新しいアルゴリズムを開発した。
我々のアルゴリズムは、サイロ間レコードレベル差分プライバシー(ISRL-DP)を満たす。
実験では、さまざまなプライバシレベルにわたるアルゴリズムのトレードオフとして、最先端の公正性・正確性フレームワークが実証されている。
論文 参考訳(メタデータ) (2024-11-12T15:51:35Z) - VFLGAN: Vertical Federated Learning-based Generative Adversarial Network for Vertically Partitioned Data Publication [16.055684281505474]
本稿では,垂直分割型データパブリッシングのための垂直フェデレート学習に基づく生成広告ネットワーク,VFLGANを提案する。
VFLGANが生成した合成データセットの品質は、VertiGANが生成したデータセットの3.2倍である。
また,合成データセットによるプライバシー漏洩を推定するために,会員推定攻撃を適用した実践的な監査手法を提案する。
論文 参考訳(メタデータ) (2024-04-15T12:25:41Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
本稿では,UFed-GAN: Unsupervised Federated Generative Adversarial Networkを提案する。
実験により,プライバシを保ちながら,限られた計算資源とラベルなしデータに対処するUFed-GANの強い可能性を示す。
論文 参考訳(メタデータ) (2023-08-10T22:52:13Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
フェデレーション学習(FL)は、中央サーバでデータを収集することなく、エッジデバイス上でニューラルネットワークをトレーニングする。
本稿では,局所モデル以外の補助データを共有するハード特徴マッチングデータ合成(HFMDS)手法を提案する。
プライバシーの保存性を向上するため,本研究では,実際の特徴を決定境界に向けて伝達する機能拡張手法を提案する。
論文 参考訳(メタデータ) (2023-08-09T07:49:39Z) - A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction [16.337207503536384]
本稿では,特徴類似性マッチングパラメータアグリゲーションアルゴリズムを用いたFL型健康予後モデルを提案する。
提案手法は, 健康状態推定と生活寿命推定において, 44.5%, 39.3%の精度向上を達成できることを示す。
論文 参考訳(メタデータ) (2023-05-13T07:20:31Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Federated Offline Reinforcement Learning [55.326673977320574]
マルチサイトマルコフ決定プロセスモデルを提案する。
我々は,オフラインRLを対象とした最初のフェデレーション最適化アルゴリズムを設計する。
提案アルゴリズムでは,学習ポリシーの準最適性は,データが分散していないような速度に匹敵する,理論的保証を与える。
論文 参考訳(メタデータ) (2022-06-11T18:03:26Z) - Uncertainty-Autoencoder-Based Privacy and Utility Preserving Data Type
Conscious Transformation [3.7315964084413173]
プライバシ・ユーティリティのトレードオフ問題に対処する逆学習フレームワークを2つの条件で提案する。
データタイプの無知な条件下では、プライバシメカニズムは、正確に1つのクラスを表す、カテゴリ機能の1ホットエンコーディングを提供する。
データ型認識条件下では、分類変数は各クラスごとに1つのスコアの集合で表される。
論文 参考訳(メタデータ) (2022-05-04T08:40:15Z) - Privacy-Preserving Asynchronous Federated Learning Algorithms for
Multi-Party Vertically Collaborative Learning [151.47900584193025]
本稿では,非同期フェデレーションSGD(AFSGD-VP)アルゴリズムとその垂直分割データ上でのSVRGおよびSAGA変種を提案する。
我々の知る限り、AFSGD-VPとそのSVRGおよびSAGAの変種は、垂直に分割されたデータのための最初の非同期フェデレーション学習アルゴリズムである。
論文 参考訳(メタデータ) (2020-08-14T08:08:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。