論文の概要: D&D: Learning Human Dynamics from Dynamic Camera
- arxiv url: http://arxiv.org/abs/2209.08790v1
- Date: Mon, 19 Sep 2022 06:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 16:52:16.472842
- Title: D&D: Learning Human Dynamics from Dynamic Camera
- Title(参考訳): d&d:ダイナミックカメラから人間のダイナミクスを学ぶ
- Authors: Jiefeng Li, Siyuan Bian, Chao Xu, Gang Liu, Gang Yu, Cewu Lu
- Abstract要約: 本稿では、物理の法則を活かしたD&D(Learning Human Dynamics from Dynamic Camera)を紹介する。
私たちのアプローチは完全にニューラルネットワークで、物理エンジンのオフライン最適化やシミュレーションなしで動作します。
- 参考スコア(独自算出の注目度): 55.60512353465175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D human pose estimation from a monocular video has recently seen significant
improvements. However, most state-of-the-art methods are kinematics-based,
which are prone to physically implausible motions with pronounced artifacts.
Current dynamics-based methods can predict physically plausible motion but are
restricted to simple scenarios with static camera view. In this work, we
present D&D (Learning Human Dynamics from Dynamic Camera), which leverages the
laws of physics to reconstruct 3D human motion from the in-the-wild videos with
a moving camera. D&D introduces inertial force control (IFC) to explain the 3D
human motion in the non-inertial local frame by considering the inertial forces
of the dynamic camera. To learn the ground contact with limited annotations, we
develop probabilistic contact torque (PCT), which is computed by differentiable
sampling from contact probabilities and used to generate motions. The contact
state can be weakly supervised by encouraging the model to generate correct
motions. Furthermore, we propose an attentive PD controller that adjusts target
pose states using temporal information to obtain smooth and accurate pose
control. Our approach is entirely neural-based and runs without offline
optimization or simulation in physics engines. Experiments on large-scale 3D
human motion benchmarks demonstrate the effectiveness of D&D, where we exhibit
superior performance against both state-of-the-art kinematics-based and
dynamics-based methods. Code is available at https://github.com/Jeffsjtu/DnD
- Abstract(参考訳): 単眼ビデオからの3d人間のポーズ推定は、最近大幅に改善されている。
しかし、最先端の手法のほとんどはキネマティックスに基づくもので、目に見える人工物を持つ物理的に目立たない動きの傾向が強い。
現在の動的手法は、物理的にもっともらしい動きを予測できるが、静的カメラビューによる単純なシナリオに限定される。
本研究では、物理の法則を活かしたD&D(Learning Human Dynamics from Dynamic Camera)を用いて、移動式カメラで撮影した映像から3Dの人間の動きを再現する。
d&dは、動的カメラの慣性力を考慮して、非慣性局所フレームにおける3次元人間の動きを説明する慣性力制御(ifc)を導入する。
限られたアノテーションで接地接触を学習するために,接触確率の異なるサンプリングにより計算し,動きを生成する確率的接触トルク(PCT)を開発する。
モデルに正しい動きを起こさせるように促すことで、接触状態が弱く監視される。
さらに、時間情報を用いて目標ポーズ状態を調整し、スムーズで正確なポーズ制御を実現する注意型PDコントローラを提案する。
私たちのアプローチは完全にニューラルネットワークで、物理エンジンのオフライン最適化やシミュレーションなしで動作します。
大規模3次元人体運動ベンチマーク実験はD&Dの有効性を実証し, 最先端のキネマティクス法とダイナミックス法の両方に対して優れた性能を示す。
コードはhttps://github.com/Jeffsjtu/DnDで入手できる。
関連論文リスト
- Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
オンライン環境での運動学観測に物理モデルを選択的に組み込む新しい手法を提案する。
リカレントニューラルネットワークを導入し、キネマティックス入力とシミュレートされた動作を熱心にバランスするカルマンフィルタを実現する。
提案手法は,物理に基づく人間のポーズ推定作業に優れ,予測力学の物理的妥当性を示す。
論文 参考訳(メタデータ) (2024-10-10T10:24:59Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
我々はMotionGSと呼ばれる新しい変形可能な3次元ガウススプレイティングフレームワークを提案する。
MotionGSは3Dガウスの変形を導くために、前もって明示的な動きを探索する。
モノラルなダイナミックシーンの実験では、MotionGSが最先端の手法を超越していることが確認された。
論文 参考訳(メタデータ) (2024-10-10T08:19:47Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
本稿では,映像拡散前の物体の物理的特性を学習することを提案する。
次に,物理に基づくMaterial-Point-Methodシミュレータを用いて,現実的な動きを伴う4Dコンテンツを生成する。
論文 参考訳(メタデータ) (2024-06-03T16:05:25Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出す。
提案手法は,Human3.6Mベンチマークにおける既存の物理法と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-24T18:02:49Z) - PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time [89.68248627276955]
シングルカラーカメラからのマーカレス3Dモーションキャプチャは、大きな進歩を遂げた。
しかし、これは非常に困難な問題であり、深刻な問題である。
我々はPhysCapについて紹介する。PhysCapは物理的に可塑性でリアルタイムでマーカーのない人間の3Dモーションキャプチャのための最初のアルゴリズムである。
論文 参考訳(メタデータ) (2020-08-20T10:46:32Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。