Optimized mitigation of random-telegraph-noise dephasing by
spectator-qubit sensing and control
- URL: http://arxiv.org/abs/2205.12567v3
- Date: Wed, 21 Dec 2022 08:14:50 GMT
- Title: Optimized mitigation of random-telegraph-noise dephasing by
spectator-qubit sensing and control
- Authors: Hongting Song, Areeya Chantasri, Behnam Tonekaboni, Howard M. Wiseman
- Abstract summary: Spectator qubits (SQs) are a tool to mitigate noise in hard-to-access data qubits.
We introduce a Bayesian method employing complex linear maps which leads to a plausibly optimal adaptive measurement and control protocol.
The suppression of the decoherence rate is quadratic in the SQ sensitivity, establishing that the SQ paradigm works arbitrarily well in the right regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectator qubits (SQs) are a tool to mitigate noise in hard-to-access data
qubits. The SQ, designed to be much more sensitive to the noise, is measured
frequently, and the accumulated results used rarely to correct the data qubits.
For the hardware-relevant example of dephasing from random telegraph noise, we
introduce a Bayesian method employing complex linear maps which leads to a
plausibly optimal adaptive measurement and control protocol. The suppression of
the decoherence rate is quadratic in the SQ sensitivity, establishing that the
SQ paradigm works arbitrarily well in the right regime.
Related papers
- Efficient learning and optimizing non-Gaussian correlated noise in digitally controlled qubit systems [0.6138671548064356]
We show how to achieve higher-order spectral estimation for noise-optimized circuit design.
Remarkably, we find that the digitally driven qubit dynamics can be solely determined by the complexity of the applied control.
arXiv Detail & Related papers (2025-02-08T02:09:40Z) - Imperfection analyses for random-telegraph-noise mitigation using spectator qubits [0.0]
Spectator qubits (SQs) for random-telegraph noise mitigation have been proposed.
We analyze the proposed adaptive protocol under non-ideal conditions.
arXiv Detail & Related papers (2025-01-26T13:15:12Z) - Optimizing quantum error correction protocols with erasure qubits [42.00287729190062]
Erasure qubits offer a promising avenue toward reducing the overhead of quantum error correction protocols.
We focus on the performance of the surface code as a quantum memory.
Our results indicate that QEC protocols with erasure qubits can outperform the ones with state-of-the-art transmons.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Greedy versus Map-based Optimized Adaptive Algorithms for
random-telegraph-noise mitigation by spectator qubits [6.305016513788048]
In a scenario where data-storage qubits are kept in isolation as far as possible, noise mitigation can still be done using additional noise probes.
We construct a theoretical model assuming projective measurements on the qubits, and derive the performance of different measurement and control strategies.
We show, analytically and numerically, that MOAAAR outperforms the Greedy algorithm, especially in the regime of high noise sensitivity of SQ.
arXiv Detail & Related papers (2022-05-25T08:25:10Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes [71.23286211775084]
We propose an adaptive low-pass filter based on Gaussian process regression.
We show that the estimation error of the proposed method is uniformly bounded.
arXiv Detail & Related papers (2021-11-05T17:06:59Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.