Adaptive quantum error mitigation using pulse-based inverse evolutions
- URL: http://arxiv.org/abs/2303.05001v2
- Date: Wed, 15 Nov 2023 12:57:46 GMT
- Title: Adaptive quantum error mitigation using pulse-based inverse evolutions
- Authors: Ivan Henao, Jader P. Santos, and Raam Uzdin
- Abstract summary: We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Error Mitigation (QEM) enables the extraction of high-quality results
from the presently-available noisy quantum computers. In this approach, the
effect of the noise on observables of interest can be mitigated using multiple
measurements without additional hardware overhead. Unfortunately, current QEM
techniques are limited to weak noise or lack scalability. In this work, we
introduce a QEM method termed `Adaptive KIK' that adapts to the noise level of
the target device, and therefore, can handle moderate-to-strong noise. The
implementation of the method is experimentally simple -- it does not involve
any tomographic information or machine-learning stage, and the number of
different quantum circuits to be implemented is independent of the size of the
system. Furthermore, we have shown that it can be successfully integrated with
randomized compiling for handling both incoherent as well as coherent noise.
Our method handles spatially correlated and time-dependent noise which enables
to run shots over the scale of days or more despite the fact that noise and
calibrations change in time. Finally, we discuss and demonstrate why our
results suggest that gate calibration protocols should be revised when using
QEM. We demonstrate our findings in the IBM quantum computers and through
numerical simulations.
Related papers
- Unconditionally decoherence-free quantum error mitigation by density matrix vectorization [4.2630430280861376]
We give a new paradigm of quantum error mitigation based on the vectorization of density matrices.
Our proposal directly changes the way of encoding information and maps the density matrices of noisy quantum states to noiseless pure states.
Our protocol requires no knowledge of the noise model, no ability to tune the noise strength, and no ancilla qubits for complicated controlled unitaries.
arXiv Detail & Related papers (2024-05-13T09:55:05Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Superposed Quantum Error Mitigation [1.732837834702512]
Overcoming the influence of noise and imperfections is a major challenge in quantum computing.
We present an approach based on applying a desired unitary computation in superposition between the system of interest and some auxiliary states.
We demonstrate, numerically and on the IBM Quantum Platform, that parallel applications of the same operation lead to significant noise mitigation.
arXiv Detail & Related papers (2023-04-17T18:01:01Z) - Noise-robust ground state energy estimates from deep quantum circuits [0.0]
We show how the underlying energy estimate explicitly filters out incoherent noise in quantum algorithms.
We implement QCM for a model of quantum magnetism on IBM Quantum hardware.
We find that QCM maintains a remarkably high degree of error robustness where VQE completely fails.
arXiv Detail & Related papers (2022-11-16T09:12:55Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Mitigating realistic noise in practical noisy intermediate-scale quantum
devices [0.5872014229110214]
Quantum error mitigation (QEM) is vital for noisy intermediate-scale quantum (NISQ) devices.
Most conventional QEM schemes assume discrete gate-based circuits with noise appearing either before or after each gate.
We show it can be effectively suppressed by a novel QEM method.
arXiv Detail & Related papers (2020-01-14T16:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.