論文の概要: Service Discovery in Social Internet of Things using Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2205.12711v1
- Date: Wed, 25 May 2022 12:25:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 20:50:26.953048
- Title: Service Discovery in Social Internet of Things using Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークを用いたモノのインターネットにおけるサービス発見
- Authors: Aymen Hamrouni, Hakim Ghazzai, and Yehia Massoud
- Abstract要約: IoT(Internet-of-Things)ネットワークは、何千もの物理的エンティティをインテリジェントに接続して、コミュニティにさまざまなサービスを提供する。
ネットワークに存在するIoTデバイスを発見し、それに対応するサービスを要求するプロセスを複雑にしている。
異種大規模IoTネットワークに適したスケーラブルなリソース割り当てニューラルモデルを提案する。
- 参考スコア(独自算出の注目度): 1.552282932199974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internet-of-Things (IoT) networks intelligently connect thousands of physical
entities to provide various services for the community. It is witnessing an
exponential expansion, which is complicating the process of discovering IoT
devices existing in the network and requesting corresponding services from
them. As the highly dynamic nature of the IoT environment hinders the use of
traditional solutions of service discovery, we aim, in this paper, to address
this issue by proposing a scalable resource allocation neural model adequate
for heterogeneous large-scale IoT networks. We devise a Graph Neural Network
(GNN) approach that utilizes the social relationships formed between the
devices in the IoT network to reduce the search space of any entity lookup and
acquire a service from another device in the network. This proposed resource
allocation approach surpasses standardization issues and embeds the structure
and characteristics of the social IoT graph, by the means of GNNs, for eventual
clustering analysis process. Simulation results applied on a real-world dataset
illustrate the performance of this solution and its significant efficiency to
operate on large-scale IoT networks.
- Abstract(参考訳): IoT(Internet-of-Things)ネットワークは、何千もの物理的エンティティをインテリジェントに接続して、コミュニティにさまざまなサービスを提供する。
ネットワークに存在するIoTデバイスを発見し、それに対応するサービスを要求するプロセスを複雑にしている。
IoT環境の極めてダイナミックな性質は、サービスディスカバリの従来のソリューションの使用を妨げるため、異種大規模IoTネットワークに適したスケーラブルなリソース割り当てニューラルモデルを提案することで、この問題に対処することを目指している。
我々は、IoTネットワーク内のデバイス間で形成される社会的関係を利用して、エンティティ検索の検索スペースを減らし、ネットワーク内の他のデバイスからサービスを取得するグラフニューラルネットワーク(GNN)アプローチを考案した。
提案するリソース割り当てアプローチは標準化問題を克服し,GNNによるソーシャルIoTグラフの構造と特性を組み込んで,最終的なクラスタリング分析プロセスを実現する。
実世界のデータセットに適用されたシミュレーション結果は、このソリューションのパフォーマンスと、大規模なIoTネットワークで運用する上での大幅な効率を示している。
関連論文リスト
- Survey of Graph Neural Network for Internet of Things and NextG Networks [3.591122855617648]
グラフニューラルネットワーク(GNN)は、洞察を効果的にモデル化し抽出するための有望なパラダイムとして登場した。
この調査は、GNNの用語、アーキテクチャ、および異なるタイプのGNNについて、詳細な説明を提供する。
次に、GNNがネットワークシステムや戦術システムにどのように活用されているかについて詳細な説明を行う。
論文 参考訳(メタデータ) (2024-05-27T16:10:49Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
我々は、属性付きネットワークにおけるコミュニティ検出のための、教師なしのtextbfGraph Attention textbfAutotextbfEncoder に基づく、シンプルで効率的なクラスタリング指向モデルを提案する。
提案モデルは,ネットワークのトポロジと属性情報の両方から表現を十分に学習し,同時に2つの目的,すなわち再構築とコミュニティ発見に対処する。
論文 参考訳(メタデータ) (2023-11-21T20:45:55Z) - Multi-Tier Hierarchical Federated Learning-assisted NTN for Intelligent
IoT Services [24.10349383347469]
本研究では,分散型協調学習環境の育成におけるMT-HFLの役割について考察する。
これにより、IoTデバイスがコントリビューションだけでなく、ネットワーク管理において情報的な決定を行うことが可能になる。
このセットアップにより、効率的なデータ処理、高度なプライバシとセキュリティ対策、および変動するネットワーク条件への応答が保証される。
論文 参考訳(メタデータ) (2023-05-09T14:03:22Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
モノのインターネット(IoT)デバイスは、巨大な通信ネットワークを構築するために構築されます。
これらのデバイスは実際には安全ではないため、通信ネットワークが攻撃者によって露出されることを意味する。
本稿では,IoT 複数異常検出のための半監視ネットワーク SS-VTCN を提案する。
論文 参考訳(メタデータ) (2021-04-05T08:51:24Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。