Efficient generation of entangled multi-photon graph states from a single atom
- URL: http://arxiv.org/abs/2205.12736v2
- Date: Wed, 29 May 2024 12:20:14 GMT
- Title: Efficient generation of entangled multi-photon graph states from a single atom
- Authors: Philip Thomas, Leonardo Ruscio, Olivier Morin, Gerhard Rempe,
- Abstract summary: Entanglement is a powerful concept with an enormous potential for scientific and technological advances.
We show how to generate entangled states from few to many qubits using a single memory atom in a cavity.
Thanks to a source-to-detection efficiency of 43.18 (7)% per photon we measure these large states about once every minute, orders of magnitude faster than in any previous experiment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is a powerful concept with an enormous potential for scientific and technological advances. A central focus in modern research is to extend the generation and control of entangled states from few to many qubits, and protect them against decoherence. Optical photons play a prominent role as these qubit carriers are naturally robust and easy to manipulate. However, the most successful technique to date for creating photonic entanglement is inherently probabilistic and therefore subject to severe scalability limitations. Here we avoid these by implementing a deterministic protocol with a single memory atom in a cavity. We interleave controlled single-photon emissions with tailored atomic qubit rotations to efficiently grow Greenberger-Horne-Zeilinger states of up to 14 photons and linear cluster states of up to 12 photons with a fidelity lower bounded by 76(6)% and 56(4)%, respectively. Thanks to a source-to-detection efficiency of 43.18(7)% per photon we measure these large states about once every minute, orders of magnitude faster than in any previous experiment. In the future, this rate could be increased even further, the scheme could be extended to two atoms in a cavity, or several sources could be quantum mechanically coupled, to generate higher-dimensional cluster states. Overcoming the limitations encountered by probabilistic schemes for photonic entanglement generation, our results may offer a way towards scalable measurement-based quantum computation and communication.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Efficient nuclear spin - photon entanglement with optical routing [0.0]
Quantum networks and distributed quantum computers rely on entanglement generation between photons and long-lived quantum memories.
Here, we maximize the efficiency for the detection of hybrid entanglement between a nuclear spin qubit in diamond with a photonic time-bin qubit.
Our results thus pave the way for the future high-performance quantum networks.
arXiv Detail & Related papers (2024-08-03T17:01:03Z) - Generation of many-body entanglement by collective coupling of atom pairs to cavity photons [0.0]
We identify a controllable and scalable catalyst that allows metrologically useful entangled states to be generated at a high rate.
The time scale of entanglement formation can be much shorter than for bare atom-atom interactions, effectively eliminating the decoherence due to photon losses.
Our protocol may find applications in future quantum sensors or other systems where controllable and scalable many-body entanglement is desired.
arXiv Detail & Related papers (2024-06-20T16:23:05Z) - Orbital angular momentum based intra- and inter- particle entangled
states generated via a quantum dot source [0.0]
This work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM photons.
We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon.
Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate.
arXiv Detail & Related papers (2022-11-09T19:20:49Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High-rate entanglement between a semiconductor spin and
indistinguishable photons [0.0]
Photonic graph states are key resources for optical quantum technologies.
Spin-photon entanglement has been proposed to deterministically generate linear cluster states.
We harness a semiconductor quantum dot inserted in an optical cavity for efficient photon collection.
arXiv Detail & Related papers (2022-07-20T13:22:07Z) - Deterministic Time-Bin Entanglement between a Single Photon and an
Atomic Ensemble [14.48328955835803]
We report the deterministic creation of entanglement between an atomic ensemble and a single photon by harnessing Rydberg blockade.
We design a scheme that creates entanglement between a single photon's temporal modes and the Rydberg levels that host a collective excitation.
The hybrid entanglement is tested via retrieving the atomic excitation as a second photon and performing correlation measurements, which suggest an entanglement fidelity of 87.8%.
arXiv Detail & Related papers (2021-08-05T08:12:08Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.