論文の概要: Online Deep Equilibrium Learning for Regularization by Denoising
- arxiv url: http://arxiv.org/abs/2205.13051v1
- Date: Wed, 25 May 2022 21:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-28 11:35:58.705348
- Title: Online Deep Equilibrium Learning for Regularization by Denoising
- Title(参考訳): 離散化による正規化のためのオンライン深層平衡学習
- Authors: Jiaming Liu, Xiaojian Xu, Weijie Gan, Shirin Shoushtari, Ulugbek S.
Kamilov
- Abstract要約: Plug-and-Play Equilibrium Priors (メモリ)とRegularization by Denoising (RED)は、固定点の計算によって逆画像問題を解決するために広く使われているフレームワークである。
我々は,測定総数に基づいてDEC/REDの効率を向上させるための新しい戦略としてODERを提案する。
以上の結果から,ODERによるトレーニング/テストの複雑さが3つの異なる画像応用において改善する可能性が示唆された。
- 参考スコア(独自算出の注目度): 20.331171081002957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are
widely-used frameworks for solving imaging inverse problems by computing
fixed-points of operators combining physical measurement models and learned
image priors. While traditional PnP/RED formulations have focused on priors
specified using image denoisers, there is a growing interest in learning
PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models
(DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED
priors by implicitly differentiating through the fixed-point equations without
storing intermediate activation values. However, the dependence of the
computational/memory complexity of the measurement models in PnP/RED on the
total number of measurements leaves DEQ impractical for many imaging
applications. We propose ODER as a new strategy for improving the efficiency of
DEQ through stochastic approximations of the measurement models. We
theoretically analyze ODER giving insights into its convergence and ability to
approximate the traditional DEQ approach. Our numerical results suggest the
potential improvements in training/testing complexity due to ODER on three
distinct imaging applications.
- Abstract(参考訳): PnP(Plug-and-Play Priors)とRED(Regularization by Denoising)は、物理測定モデルと学習画像の事前処理を組み合わせた演算子の固定点を計算することで、画像の逆問題を解決するために広く使われているフレームワークである。
従来のPnP/REDの定式化は、イメージデノイザを使って指定された事前に重点を置いているが、エンドツーエンドで最適なPnP/REDの事前学習への関心が高まっている。
最近のDeep Equilibrium Models (DEQ)フレームワークは、中間活性化値を保存することなく固定点方程式を暗黙的に微分することで、PnP/RED前のメモリ効率のよいエンドツーエンド学習を可能にした。
しかし、PnP/REDにおける測定モデルの計算/メモリの複雑さが測定総数に依存するため、多くの画像応用においてDECは実用的ではない。
我々は,測定モデルの確率的近似によるDECの効率向上のための新しい戦略としてODERを提案する。
理論上,oderはその収束性と従来のdeqアプローチを近似する能力について洞察を与える。
以上の結果から,ODERによるトレーニング/テストの複雑さが3つの異なる画像応用において改善する可能性が示唆された。
関連論文リスト
- Efficient Neural PDE-Solvers using Quantization Aware Training [71.0934372968972]
量子化は、性能を維持しながら推論の計算コストを下げることができることを示す。
4つの標準PDEデータセットと3つのネットワークアーキテクチャの結果、量子化対応のトレーニングは、設定と3桁のFLOPで機能することがわかった。
論文 参考訳(メタデータ) (2023-08-14T09:21:19Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
本稿では,スコア関数を先行生成関数とする高速化されたWirtinger Flow (AWF) を用いた新しいアルゴリズム"AWFS"を提案する。
PRの対数様関数の勾配を計算し、リプシッツ定数を決定する。
本稿では,提案アルゴリズムの臨界点収束保証を確立する理論的解析を行う。
論文 参考訳(メタデータ) (2023-05-12T18:08:47Z) - On Maximum-a-Posteriori estimation with Plug & Play priors and
stochastic gradient descent [13.168923974530307]
画像問題の解法は、通常、明示的なデータ可能性関数と、その解の明確な期待特性とを結合する。
明示的なモデリングから離れて、画像復調アルゴリズムによって定義された暗黙の先行値の使用について、いくつかの最近の研究が提案され、研究されている。
論文 参考訳(メタデータ) (2022-01-16T20:50:08Z) - Recovery Analysis for Plug-and-Play Priors using the Restricted
Eigenvalue Condition [48.08511796234349]
本稿では, プラグアンドプレイ先行(ノイズ)の理論的回復保証の確立方法と, RED法による正規化について述べる。
以上の結果から,事前学習したアーティファクト除去ネットワークを用いたモデルの方が,既存の最先端手法と比較して有意に優れた結果が得られることが示唆された。
論文 参考訳(メタデータ) (2021-06-07T14:45:38Z) - TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to
Inverse Imaging Problems [22.239477171296056]
Plug-and-Play (MM) は非最適化フレームワークであり、例えば、数値アルゴリズムと高度なデノゲーション前処理を組み合わせたものである。
我々は、学習戦略とともに最先端の成果である、より難解な問題に対するいくつかの実践的考察について論じる。
論文 参考訳(メタデータ) (2020-11-18T14:19:30Z) - Shared Prior Learning of Energy-Based Models for Image Reconstruction [69.72364451042922]
本研究では,地中真理データを含まないトレーニングに特化して設計された画像再構成のための新しい学習ベースフレームワークを提案する。
基底真理データがない場合には、損失関数をパッチベースのワッサーシュタイン関数に変更する。
共用事前学習では、上記の最適制御問題と正規化器の共用学習パラメータを同時に最適化する。
論文 参考訳(メタデータ) (2020-11-12T17:56:05Z) - Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints [80.60538408386016]
連続するフレームから相対的なカメラのポーズを推定することは、視覚計測の基本的な問題である。
本稿では,検出,特徴抽出,マッチング,外乱除去のための学習可能なモジュールで構成されるエンドツーエンドのトレーニング可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-29T21:41:31Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - Scalable Plug-and-Play ADMM with Convergence Guarantees [24.957046830965822]
広範に使われている変種を漸進的に提案する。
ADMMアルゴリズムにより、大規模データセットにスケーラブルになる。
理論的には,集合的明示的な仮定の下で収束アルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-05T04:10:15Z) - Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging
Problems [22.239477171296056]
Plug-and-play ()は、異なる学習アルゴリズムと先進的なデノイザプリエントを組み合わせた、カスタマイズされていないフレームワークである。
重要な問題です。
ベースとなるアプローチは、手動でパラメータを調整する必要があることです。
提案手法の鍵となるのは,パラメータの自動チューニングのためのネットワークポリシの開発である。
圧縮センシングと位相検索において有望な結果を示す。
論文 参考訳(メタデータ) (2020-02-22T03:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。