論文の概要: Recovery Analysis for Plug-and-Play Priors using the Restricted
Eigenvalue Condition
- arxiv url: http://arxiv.org/abs/2106.03668v1
- Date: Mon, 7 Jun 2021 14:45:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:20:48.054663
- Title: Recovery Analysis for Plug-and-Play Priors using the Restricted
Eigenvalue Condition
- Title(参考訳): 制限固有値条件を用いたプラグ・アンド・プレイ先行値の回復解析
- Authors: Jiaming Liu, M. Salman Asif, Brendt Wohlberg, and Ulugbek S. Kamilov
- Abstract要約: 本稿では, プラグアンドプレイ先行(ノイズ)の理論的回復保証の確立方法と, RED法による正規化について述べる。
以上の結果から,事前学習したアーティファクト除去ネットワークを用いたモデルの方が,既存の最先端手法と比較して有意に優れた結果が得られることが示唆された。
- 参考スコア(独自算出の注目度): 48.08511796234349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The plug-and-play priors (PnP) and regularization by denoising (RED) methods
have become widely used for solving inverse problems by leveraging pre-trained
deep denoisers as image priors. While the empirical imaging performance and the
theoretical convergence properties of these algorithms have been widely
investigated, their recovery properties have not previously been theoretically
analyzed. We address this gap by showing how to establish theoretical recovery
guarantees for PnP/RED by assuming that the solution of these methods lies near
the fixed-points of a deep neural network. We also present numerical results
comparing the recovery performance of PnP/RED in compressive sensing against
that of recent compressive sensing algorithms based on generative models. Our
numerical results suggest that PnP with a pre-trained artifact removal network
provides significantly better results compared to the existing state-of-the-art
methods.
- Abstract(参考訳): プラグ・アンド・プレイ先行(PnP)とレギュラー化法(RED)は,事前学習したディープ・デノイザを画像プリエントとして活用することで,逆問題の解決に広く利用されている。
これらのアルゴリズムの実証画像性能と理論的収束特性は広く研究されているが、その回復特性は理論的に解析されていない。
我々は, pnp/red の解がディープニューラルネットワークの固定点近傍にあることを仮定して, 理論的な回復保証を確立する方法を示すことにより, このギャップに対処する。
また, 圧縮センシングにおけるPnP/REDの回復性能を, 生成モデルに基づく最近の圧縮センシングアルゴリズムと比較した数値結果を示す。
以上の結果から,プレトレーニング済みのアーティファクト除去ネットワークを用いたPnPは,既存の最先端手法と比較して有意に優れた結果が得られることが示唆された。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Pruning Deep Neural Networks from a Sparsity Perspective [34.22967841734504]
プルーニングは、しばしば、同等のテスト性能を維持しながら、ディープネットワークの冗長な重み、ニューロン、または層を落とすことで達成される。
深層ニューラルネットワークの圧縮可能性を測定するためにPQインデックス(PQI)を提案し,これをスペーサ性インフォームド・アダプティブ・プルーニング(SAP)アルゴリズムの開発に利用する。
論文 参考訳(メタデータ) (2023-02-11T04:52:20Z) - Online Deep Equilibrium Learning for Regularization by Denoising [20.331171081002957]
Plug-and-Play Equilibrium Priors (メモリ)とRegularization by Denoising (RED)は、固定点の計算によって逆画像問題を解決するために広く使われているフレームワークである。
我々は,測定総数に基づいてDEC/REDの効率を向上させるための新しい戦略としてODERを提案する。
以上の結果から,ODERによるトレーニング/テストの複雑さが3つの異なる画像応用において改善する可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T21:06:22Z) - Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization [7.0226402509856225]
Plug-and-Play ()メソッドは、ニューラルネットワーク演算子をデノナイジング演算子に置き換えることで、アルゴリズムによって、近位姿勢の逆問題を解決する。
このデノイザが実際に勾配関数に対応していることが示される。
論文 参考訳(メタデータ) (2022-01-31T14:05:20Z) - On Maximum-a-Posteriori estimation with Plug & Play priors and
stochastic gradient descent [13.168923974530307]
画像問題の解法は、通常、明示的なデータ可能性関数と、その解の明確な期待特性とを結合する。
明示的なモデリングから離れて、画像復調アルゴリズムによって定義された暗黙の先行値の使用について、いくつかの最近の研究が提案され、研究されている。
論文 参考訳(メタデータ) (2022-01-16T20:50:08Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
ResNets(Residual Networks)は、これらの強力なモダンアーキテクチャの中でも際立っている。
本稿では,2つのモデル,すなわちResNetsが勾配よりもスムーズな傾向を示す。
論文 参考訳(メタデータ) (2020-09-21T16:32:04Z) - Scalable Plug-and-Play ADMM with Convergence Guarantees [24.957046830965822]
広範に使われている変種を漸進的に提案する。
ADMMアルゴリズムにより、大規模データセットにスケーラブルになる。
理論的には,集合的明示的な仮定の下で収束アルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-05T04:10:15Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
我々は、最小二乗(LS)の代替として、バックプロジェクションに基づく忠実度項を考える。
LS項ではなくBP項を用いることで最適化アルゴリズムの繰り返しを少なくすることを示す。
論文 参考訳(メタデータ) (2020-05-03T00:58:23Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。