論文の概要: TransBoost: Improving the Best ImageNet Performance using Deep
Transduction
- arxiv url: http://arxiv.org/abs/2205.13331v1
- Date: Thu, 26 May 2022 13:09:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-27 22:59:09.436029
- Title: TransBoost: Improving the Best ImageNet Performance using Deep
Transduction
- Title(参考訳): TransBoost: ディープトランスダクションによる最高のイメージネットパフォーマンスの向上
- Authors: Omer Belhasin, Guy Bar-Shalom, Ran El-Yaniv
- Abstract要約: 本稿では, ディープ・トランスダクティブ・ラーニングを扱い, ディープ・ニューラル・モデルの微調整手法としてTransBoostを提案する。
TransBoostは大きなマージンの原則にインスパイアされ、効率的で使いやすい。
TransBoostは多様な画像分類データセットに有効であることを示す。
- 参考スコア(独自算出の注目度): 15.929238800072195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper deals with deep transductive learning, and proposes TransBoost as
a procedure for fine-tuning any deep neural model to improve its performance on
any (unlabeled) test set provided at training time. TransBoost is inspired by a
large margin principle and is efficient and simple to use. The ImageNet
classification performance is consistently and significantly improved with
TransBoost on many architectures such as ResNets, MobileNetV3-L,
EfficientNetB0, ViT-S, and ConvNext-T. Additionally we show that TransBoost is
effective on a wide variety of image classification datasets.
- Abstract(参考訳): 本稿では,学習中に提供される任意の(ラベルなし)テストセットのパフォーマンスを改善するために,任意の深層神経モデルの微調整手順としてtransboostを提案する。
TransBoostは大きなマージン原理にインスパイアされ、効率的で使いやすい。
ImageNetの分類性能は、ResNets、MobileNetV3-L、EfficientNetB0、ViT-S、ConvNext-Tなど多くのアーキテクチャ上でTransBoostによって一貫して大幅に改善されている。
さらに,TransBoostは多様な画像分類データセットに有効であることを示す。
関連論文リスト
- Adaptively Bypassing Vision Transformer Blocks for Efficient Visual Tracking [11.361394596302334]
ABTrackは、効率的な視覚追跡のためにトランスフォーマーブロックを適応的にバイパスする適応型計算フレームワークである。
本稿では,トランスブロックをバイパスすべきかどうかを判断するBypass Decision Module (BDM)を提案する。
本稿では,各トランスブロックにおけるトークンの潜在表現の次元を小さくする,新しいViTプルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-06-12T09:39:18Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - Image edge enhancement for effective image classification [7.470763273994321]
ニューラルネットワークの精度とトレーニング速度を両立させるエッジ拡張に基づく手法を提案する。
我々のアプローチは、利用可能なデータセット内の画像からエッジなどの高周波特徴を抽出し、元の画像と融合させることである。
論文 参考訳(メタデータ) (2024-01-13T10:01:34Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
トランスフォーマーに基づく手法は、画像の超解像や復調といった画像復元タスクにおいて顕著な性能を示している。
本稿では,新たなHAT(Hybrid Attention Transformer)を提案する。
我々のHATは,定量的かつ定性的に,最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-09-11T05:17:55Z) - On Suppressing Range of Adaptive Stepsizes of Adam to Improve Generalisation Performance [2.71467552808655]
我々はAdamの適応段差の範囲を抑えるために階層統計を利用する。
結果のアルゴリズムはSET-Adamと呼ばれ、SETは3つの操作の簡単な表記法である。
SET-Adamは、ImageNet上でResNet18をトレーニングするためにAdamやAdaBeliefよりも高い検証精度を生成する。
論文 参考訳(メタデータ) (2023-02-02T11:46:23Z) - Skip-Attention: Improving Vision Transformers by Paying Less Attention [55.47058516775423]
視覚計算変換器(ViT)は、すべての層で高価な自己注意操作を使用する。
また,SkipAtを提案する。SkipAtは,先行層から自己注意を再利用して1層以上の注意を近似する手法である。
本稿では,画像の分類と自己教師型学習,ADE20Kのセマンティックセグメンテーション,SIDDの画像デノイング,DAVISのビデオデノナイズにおける手法の有効性を示す。
論文 参考訳(メタデータ) (2023-01-05T18:59:52Z) - Activating More Pixels in Image Super-Resolution Transformer [53.87533738125943]
トランスフォーマーベースの手法は、画像超解像のような低レベルの視覚タスクにおいて顕著な性能を示している。
本稿では,新たなHAT(Hybrid Attention Transformer)を提案する。
提案手法は1dB以上で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2022-05-09T17:36:58Z) - CondenseNet V2: Sparse Feature Reactivation for Deep Networks [87.38447745642479]
高密度接続によるディープネットワークの機能再利用は、高い計算効率を達成する効果的な方法である。
スパース機能再活性化(SFR)と呼ばれる代替アプローチを提案し、再利用機能の有用性を積極的に高めることを目指しています。
提案手法は画像分類(ImageNet, CIFAR)とオブジェクト検出(MSCOCO)において,理論的効率と実用的速度の両面で有望な性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-04-09T14:12:43Z) - Scalable Visual Transformers with Hierarchical Pooling [61.05787583247392]
本稿では,視覚的トークンを徐々にプールしてシーケンス長を縮小する階層的ビジュアルトランスフォーマ(hvt)を提案する。
計算の複雑さを増すことなく、深さ/幅/解像度/パッチサイズの寸法をスケールすることで、大きなメリットをもたらします。
当社のHVTはImageNetとCIFAR-100データセットの競合ベースラインを上回っています。
論文 参考訳(メタデータ) (2021-03-19T03:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。