論文の概要: Censored Quantile Regression Neural Networks
- arxiv url: http://arxiv.org/abs/2205.13496v1
- Date: Thu, 26 May 2022 17:10:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-05-27 13:14:12.187737
- Title: Censored Quantile Regression Neural Networks
- Title(参考訳): 補償量子回帰ニューラルネットワーク
- Authors: Tim Pearce, Jong-Hyeon Jeong, Yichen Jia, Jun Zhu
- Abstract要約: 本稿では,ニューラルネットワーク(NN)を用いた検閲データに対する量子レグレッションの実施について考察する。
線形モデルで人気のあるアルゴリズムをNNに適用する方法を示す。
我々の主な貢献は、単一のNNによって出力される量子のグリッドを同時に最適化する新しいアルゴリズムである。
- 参考スコア(独自算出の注目度): 24.118509578363593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers doing quantile regression on censored data using neural
networks (NNs). This adds to the survival analysis toolkit by allowing direct
prediction of the target variable, along with a distribution-free
characterisation of uncertainty, using a flexible function approximator. We
begin by showing how an algorithm popular in linear models can be applied to
NNs. However, the resulting procedure is inefficient, requiring sequential
optimisation of an individual NN at each desired quantile. Our major
contribution is a novel algorithm that simultaneously optimises a grid of
quantiles output by a single NN. To offer theoretical insight into our
algorithm, we show firstly that it can be interpreted as a form of
expectation-maximisation, and secondly that it exhibits a desirable
`self-correcting' property. Experimentally, the algorithm produces quantiles
that are better calibrated than existing methods on 10 out of 12 real datasets.
- Abstract(参考訳): 本稿では,ニューラルネットワーク(NN)を用いた検閲データに対する定量的回帰について考察する。
これは、フレキシブル関数近似器を用いて、ターゲット変数の直接予測と不確実性の分布自由な特性化を可能にすることで、サバイバル解析ツールキットに追加する。
まず,線形モデルによく使われるアルゴリズムをnnsに適用する方法を示す。
しかし、結果の手順は非効率であり、各所望の量子化で個々のNNを逐次最適化する必要がある。
我々の主な貢献は、単一のNNによって出力される量子のグリッドを同時に最適化する新しいアルゴリズムである。
アルゴリズムに理論的洞察を与えるために,まず期待最大化の一形態として解釈でき,次に望ましい「自己補正」特性を示すことを示す。
実験的に、このアルゴリズムは12の実際のデータセットのうち10の方法よりも校正が良いクォンタイルを生成する。
関連論文リスト
- The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
本研究では,1つの決定論的表現に基づく1つのネットワークの不確実性向上手法について検討する。
本稿では,現代のDNNにおける距離認識能力を向上させる簡易な手法として,スペクトル正規化ニューラルガウス過程(SNGP)を提案する。
ビジョンと言語理解のベンチマークスイートでは、SNGPは予測、キャリブレーション、ドメイン外検出において、他の単一モデルアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-05-01T05:46:13Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Consistent Sparse Deep Learning: Theory and Computation [11.24471623055182]
スパース深層学習ネットワーク(DNN)を学習するための頻繁な方法を提案する。
提案手法は大規模ネットワーク圧縮や高次元非線形変数選択に非常に有効である。
論文 参考訳(メタデータ) (2021-02-25T23:31:24Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
ニューラルネットワーク(NN)は、モデルベースの最適化手順のコアでうまく機能することが実証されている。
トレーニングされた回帰モデルは,いくつかのベースラインよりも優れた予測品質が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T07:32:30Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。