Persistent non-Gaussian correlations in out-of-equilibrium Rydberg atom arrays
- URL: http://arxiv.org/abs/2306.12210v2
- Date: Mon, 27 May 2024 13:32:09 GMT
- Title: Persistent non-Gaussian correlations in out-of-equilibrium Rydberg atom arrays
- Authors: Aydin Deger, Aiden Daniel, Zlatko Papić, Jiannis K. Pachos,
- Abstract summary: We present a mechanism by which an initial state of a Rydberg atom array can retain persistent non-Gaussian correlations following a global quench.
These long-lived non-Gaussian states may have practical applications as quantum memories or stable resources for quantum-information protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian correlations emerge in a large class of many-body quantum systems quenched out of equilibrium, as demonstrated in recent experiments on coupled one-dimensional superfluids [Schweigler et al., Nature Physics 17, 559 (2021)]. Here, we present a mechanism by which an initial state of a Rydberg atom array can retain persistent non-Gaussian correlations following a global quench. This mechanism is based on an effective kinetic blockade rooted in the ground state symmetry of the system, which prevents thermalizing dynamics under the quench Hamiltonian. We propose how to observe this effect with Rydberg atom experiments and we demonstrate its resilience against several types of experimental errors. These long-lived non-Gaussian states may have practical applications as quantum memories or stable resources for quantum-information protocols due to the protected non-Gaussianity away from equilibrium.
Related papers
- A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Observability of spontaneous collapse in flavor oscillations and its
relation to the CP and CPT symmetries [0.0]
Spontaneous collapse models aim at solving the measurement problem of quantum mechanics.
We study how the violation of the $mathcalCP$ symmetry in mixing changes the spontaneous collapse effect on flavor oscillations.
arXiv Detail & Related papers (2022-08-30T16:48:21Z) - Evolution of Quantum Nonequilibrium for Coupled Harmonic Oscillators [0.0]
We study the effects of interactions on quantum relaxation towards equilibrium for a system of one-dimensional coupled harmonic oscillators.
We show by numerical simulations that interactions can delay or even prevent complete relaxation for some initial states.
arXiv Detail & Related papers (2022-05-27T01:29:23Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Subdiffusive dynamics and critical quantum correlations in a
disorder-free localized Kitaev honeycomb model out of equilibrium [0.0]
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories.
In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics.
arXiv Detail & Related papers (2020-12-10T15:39:17Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Decay and recurrence of non-Gaussian correlations in a quantum many-body
system [0.45823749779393547]
We observe a non-Gaussian initial state evolving under non-interacting dynamics in a quantum many-body system.
This non-equilibrium evolution is triggered by abruptly switching off the effective interaction between the observed collective degrees of freedom.
A description of this dynamics requires a novel mechanism for the emergence of Gaussian correlations.
arXiv Detail & Related papers (2020-03-03T21:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.