Raising the Bar in Graph-level Anomaly Detection
- URL: http://arxiv.org/abs/2205.13845v1
- Date: Fri, 27 May 2022 09:17:57 GMT
- Title: Raising the Bar in Graph-level Anomaly Detection
- Authors: Chen Qiu, Marius Kloft, Stephan Mandt, Maja Rudolph
- Abstract summary: We present a new deep learning approach that significantly improves existing one-class approaches.
Our method achieves an average performance improvement of 11.8% AUC compared to the best existing approach.
- Score: 33.737428672049255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-level anomaly detection has become a critical topic in diverse areas,
such as financial fraud detection and detecting anomalous activities in social
networks. While most research has focused on anomaly detection for visual data
such as images, where high detection accuracies have been obtained, existing
deep learning approaches for graphs currently show considerably worse
performance. This paper raises the bar on graph-level anomaly detection, i.e.,
the task of detecting abnormal graphs in a set of graphs. By drawing on ideas
from self-supervised learning and transformation learning, we present a new
deep learning approach that significantly improves existing deep one-class
approaches by fixing some of their known problems, including hypersphere
collapse and performance flip. Experiments on nine real-world data sets
involving nine techniques reveal that our method achieves an average
performance improvement of 11.8% AUC compared to the best existing approach.
Related papers
- Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning [1.3756846638796]
We propose an imbalanced GLAD method via counterfactual augmentation and feature learning.
We apply the model to brain disease datasets, which can prove the capability of our work.
arXiv Detail & Related papers (2024-07-13T13:40:06Z) - Three Revisits to Node-Level Graph Anomaly Detection: Outliers, Message
Passing and Hyperbolic Neural Networks [9.708651460086916]
In this paper, we revisit datasets and approaches for unsupervised node-level graph anomaly detection tasks.
Firstly, we introduce outlier injection methods that create more diverse and graph-based anomalies in graph datasets.
Secondly, we compare methods employing message passing against those without, uncovering the unexpected decline in performance.
arXiv Detail & Related papers (2024-03-06T19:42:34Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps [26.011499804523808]
We propose a novel approach to graph anomaly detection that leverages the power of interpretability to enhance performance.
Our method extracts an attention map derived from gradients of graph neural networks, which serves as a basis for scoring anomalies.
We extensively evaluate our approach against state-of-the-art graph anomaly detection techniques on real-world graph classification and wireless network datasets.
arXiv Detail & Related papers (2023-11-10T16:14:21Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-08-23T02:15:21Z) - A Comprehensive Survey on Graph Anomaly Detection with Deep Learning [37.83120827837028]
Anomalies represent rare observations (e.g., data records or events) that are deviating significantly from others.
In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection.
arXiv Detail & Related papers (2021-06-14T06:04:57Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.