論文の概要: TrackNet: A Triplet metric-based method for Multi-Target Multi-Camera
Vehicle Tracking
- arxiv url: http://arxiv.org/abs/2205.13857v1
- Date: Fri, 27 May 2022 09:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:56:53.823446
- Title: TrackNet: A Triplet metric-based method for Multi-Target Multi-Camera
Vehicle Tracking
- Title(参考訳): tracknet:マルチターゲットマルチカメラ車両追跡のためのトリプレットメトリックベース手法
- Authors: David Serrano, Francesc Net, Juan Antonio Rodr\'iguez and Igor Ugarte
- Abstract要約: 本稿では,交通映像からのマルチターゲットマルチカメラ(MTMC)車両追跡手法であるTrackNetを提案する。
提案手法は,まずFaster R-CNNを用いて車両のフレーム・バイ・フレーム検出を行い,次いでKalmanフィルタを用いて1台のカメラで検出を追跡し,最終的に3重メトリック学習戦略によってトラックをマッチングする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present TrackNet, a method for Multi-Target Multi-Camera (MTMC) vehicle
tracking from traffic video sequences. Cross-camera vehicle tracking has proved
to be a challenging task due to perspective, scale and speed variance, as well
occlusions and noise conditions. Our method is based on a modular approach that
first detects vehicles frame-by-frame using Faster R-CNN, then tracks
detections through single camera using Kalman filter, and finally matches
tracks by a triplet metric learning strategy. We conduct experiments on
TrackNet within the AI City Challenge framework, and present competitive IDF1
results of 0.4733.
- Abstract(参考訳): 本稿では,交通映像からのマルチターゲットマルチカメラ(MTMC)車両追跡手法であるTrackNetを提案する。
カメラ間の車両追跡は、視界、スケール、速度のばらつき、および閉塞や騒音条件によって難しい課題であることが判明した。
提案手法は,まずFaster R-CNNを用いて車両のフレーム・バイ・フレーム検出を行い,次いでKalmanフィルタを用いて1台のカメラで検出を追跡し,最終的に3重メトリック学習戦略によりトラックをマッチングする。
我々は,ai都市チャレンジフレームワークにおけるトラックネットの実験を行い,0.4733の競合idf1結果を示す。
関連論文リスト
- Multi-Object Tracking with Camera-LiDAR Fusion for Autonomous Driving [0.764971671709743]
提案したMOTアルゴリズムは、3段階のアソシエーションプロセスと、検出された動的障害物の運動を推定する拡張カルマンフィルタと、トラック管理フェーズとを備える。
多くの最先端のマルチモーダルMOTアプローチとは異なり、提案アルゴリズムはエゴのグローバルなポーズの地図や知識に依存しない。
このアルゴリズムはシミュレーションと実世界のデータの両方で検証され、良好な結果が得られる。
論文 参考訳(メタデータ) (2024-03-06T23:49:16Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z) - City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones [28.922703073971466]
本稿では,2021年AIシティチャレンジ(AICITY21)におけるトラック3多カメラ車両追跡タスクのソリューションについて述べる。
フレームワークには以下のものがある。
成熟した検出と車両再識別モデルを使用して、ターゲットと外観の特徴を抽出します。
交差路の特性により,トラックレットフィルタ戦略と方向に基づくテンポラリマスクを提案する。
論文 参考訳(メタデータ) (2021-05-14T03:01:17Z) - Online Clustering-based Multi-Camera Vehicle Tracking in Scenarios with
overlapping FOVs [2.6365690297272617]
マルチターゲットマルチカメラ(MTMC)車両追跡は,視覚的交通監視において重要な課題である。
本稿では,MTMC追跡のための新しい低遅延オンライン手法を提案する。
論文 参考訳(メタデータ) (2021-02-08T09:55:55Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
異なる訓練可能なモジュールからなる確率的、マルチモーダル、マルチオブジェクトトラッキングシステムを提案する。
本手法はNuScenes Trackingデータセットの現在の状態を上回っていることを示した。
論文 参考訳(メタデータ) (2020-12-26T15:00:54Z) - Traffic-Aware Multi-Camera Tracking of Vehicles Based on ReID and Camera
Link Model [43.850588717944916]
MTMCT(Multi-target Multi-camera Tracking)は,スマートシティアプリケーションにおいて重要な技術である。
本稿では,車載用MTMCTフレームワークを提案する。
提案するMTMCTは,CityFlowデータセットを用いて評価し,IDF1の74.93%の新たな最先端性能を実現する。
論文 参考訳(メタデータ) (2020-08-22T08:54:47Z) - Towards Autonomous Driving: a Multi-Modal 360$^{\circ}$ Perception
Proposal [87.11988786121447]
本稿では,自動運転車の3次元物体検出と追跡のためのフレームワークを提案する。
このソリューションは、新しいセンサ融合構成に基づいて、正確で信頼性の高い道路環境検出を提供する。
自動運転車に搭載されたシステムの様々なテストは、提案された知覚スタックの適合性を評価することに成功している。
論文 参考訳(メタデータ) (2020-08-21T20:36:21Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
論文 参考訳(メタデータ) (2020-07-30T16:39:22Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。