論文の概要: Deep Ensembles for Graphs with Higher-order Dependencies
- arxiv url: http://arxiv.org/abs/2205.13988v1
- Date: Fri, 27 May 2022 14:01:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:43:44.830506
- Title: Deep Ensembles for Graphs with Higher-order Dependencies
- Title(参考訳): 高階依存グラフのためのディープアンサンブル
- Authors: Steven J. Krieg, William C. Burgis, Patrick M. Soga, Nitesh V. Chawla
- Abstract要約: グラフニューラルネットワーク(GNN)は多くのグラフ学習タスクで最先端のパフォーマンスを継続する。
従来のグラフ表現が各ノードの近傍に不適合な傾向は,既存のGNNの一般化に悪影響を及ぼすことを示す。
本稿では,同一ノードの異なる近傍部分空間上でGNNのアンサンブルを訓練することにより,近傍のばらつきを捉える新しいディープグラフアンサンブル(DGE)を提案する。
- 参考スコア(独自算出の注目度): 13.164412455321907
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) continue to achieve state-of-the-art performance
on many graph learning tasks, but rely on the assumption that a given graph is
a sufficient approximation of the true neighborhood structure. In the presence
of higher-order sequential dependencies, we show that the tendency of
traditional graph representations to underfit each node's neighborhood causes
existing GNNs to generalize poorly. To address this, we propose a novel Deep
Graph Ensemble (DGE), which captures neighborhood variance by training an
ensemble of GNNs on different neighborhood subspaces of the same node within a
higher-order network structure. We show that DGE consistently outperforms
existing GNNs on semisupervised and supervised tasks on four real-world data
sets with known higher-order dependencies, even under a similar parameter
budget. We demonstrate that learning diverse and accurate base classifiers is
central to DGE's success, and discuss the implications of these findings for
future work on GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、多くのグラフ学習タスクにおいて最先端のパフォーマンスを継続するが、与えられたグラフが真の近傍構造の十分な近似であるという仮定に依存している。
高次シーケンシャルな依存関係の存在下では、従来のグラフ表現が各ノードの近傍に不適合な傾向が既存のgnnの一般化を損なうことを示した。
そこで本研究では,高階ネットワーク構造内の同一ノードの異なる近傍部分空間上でGNNのアンサンブルを訓練することにより,近傍のばらつきを捉える新しいDeep Graph Ensemble (DGE)を提案する。
DGEは、同様のパラメータ予算の下でも、既知の高階依存を持つ4つの実世界のデータセット上で、半教師付きおよび教師付きタスクにおいて、既存のGNNを一貫して上回ることを示す。
本研究は,DGEの成功に基づく多様かつ正確な基底分類器の学習が重要であることを実証し,今後のGNN研究におけるこれらの発見の意義について論じる。
関連論文リスト
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
グラフニューラルネットワーク(GNN)は、固有のネットワーク機能の抽出に重点を置いている。
GNNのための強化型メタラーナを提案する。
AdaGNNは、リッチで多様なノード近傍情報を持つアプリケーションに対して非常によく機能する。
論文 参考訳(メタデータ) (2021-08-14T03:07:26Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
グラフニューラルネットワーク(GNN)は、複数のグラフベースの学習タスクで大きな成功を収めています。
入力グラフを近接情報と構造情報の両方を含む計算グラフに変換することに集中する。
構造と近接度を適応的に選択することで,様々な混合条件下での性能が向上することを示す。
論文 参考訳(メタデータ) (2021-06-11T19:18:34Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。