論文の概要: Effect of matrix sparsity and quantum noise on quantum random walk
linear solvers
- arxiv url: http://arxiv.org/abs/2205.14180v1
- Date: Fri, 27 May 2022 18:17:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-11 13:43:24.158861
- Title: Effect of matrix sparsity and quantum noise on quantum random walk
linear solvers
- Title(参考訳): ランダムウォーク線形解法における行列スパーシティと量子ノイズの影響
- Authors: Benjamin Wu, Hrushikesh Patil, Predrag Krstic
- Abstract要約: 理想的なノイズレス量子コンピュータでは、スパース行列は密度行列よりも相対誤差の低い解ベクトルを達成する。
量子ノイズはこの効果を逆転させ、空間的誤差が増加するにつれて全体的な誤差が増大する。
この誤差の増加の原因として、無効な量子ランダムウォークを同定し、修正線形解法アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the effects of quantum noise in hybrid quantum-classical solver for
sparse systems of linear equations using quantum random walks, applied to
stoquastic Hamiltonian matrices. In an ideal noiseless quantum computer, sparse
matrices achieve solution vectors with lower relative error than dense
matrices. However, we find quantum noise reverses this effect, with overall
error increasing as sparsity increases. We identify invalid quantum random
walks as the cause of this increased error and propose a revised linear solver
algorithm which improves accuracy by mitigating these invalid walks.
- Abstract(参考訳): 量子ランダムウォークを用いた線形方程式のスパース系に対するハイブリッド量子古典解法における量子ノイズの効果を,確率的ハミルトン行列に適用した。
理想的なノイズレス量子コンピュータでは、スパース行列は密度行列よりも相対誤差の低い解ベクトルを達成する。
しかし、量子ノイズはこの効果を逆転させ、空間的誤差が増加するにつれて全体的な誤差が増加する。
この誤差の増加の原因として無効な量子ランダムウォークを同定し,これらの不正ウォークを緩和して精度を向上させる改良線形ソルバアルゴリズムを提案する。
関連論文リスト
- Dense outputs from quantum simulations [5.295277584890625]
量子密度出力問題は、時間依存の量子力学から時間累積観測値を評価する過程である。
この問題は量子制御や分光計算などの応用で頻繁に発生する。
我々は、早期および完全フォールトトレラントな量子プラットフォームの両方で動作するように設計されたアルゴリズムを提示する。
論文 参考訳(メタデータ) (2023-07-26T18:16:51Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
このような量子アルゴリズムは、現在の量子プロセッサのノイズの性質のため、信頼性の高い結果を得るためには、エラー確率が非常に低いシングルビットと2キュービットのゲートを必要とする。
具体的には、変動パラメータの伝搬の相対誤差が量子ハードウェアのノイズの確率とどのようにスケールするかについて上限を与える。
論文 参考訳(メタデータ) (2023-06-22T17:12:52Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - A near-term quantum algorithm for solving linear systems of equations based on the Woodbury identity [0.602276990341246]
本稿では,不規則高原や局所最適解などの問題を回避し,方程式の線形系を解くための量子アルゴリズムについて述べる。
このアルゴリズムは、他の(容易に可逆な)行列の低ランクな修正である行列の逆を解析的に記述するウッドベリー恒等式に基づいている。
我々は、IBMのオークランド量子コンピュータを用いて、2%の誤差で1600万以上の方程式を解いたシステムの内部積を推定する。
論文 参考訳(メタデータ) (2022-05-02T04:32:01Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Variational Quantum Linear Solver with Dynamic Ansatz [0.0]
変分量子アルゴリズムは、そのハイブリッド量子古典的アプローチにより、NISQ時代に成功している。
線形代数方程式系に対する変分量子線形解法に動的アンサッツを導入する。
より少ない量子資源を利用することで、標準の静的アンサッツと比較してアルゴリズムの優位性を実証する。
論文 参考訳(メタデータ) (2021-07-19T03:42:25Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
静的空洞非線形性は通常、ボゾン量子誤り訂正符号の性能を制限する。
非線形性を摂動として扱うことで、シュリーファー・ヴォルフ変換を用いて実効ハミルトニアンを導出する。
その結果、立方体相互作用は、線形演算と非線形演算の両方の有効率を高めることができることがわかった。
論文 参考訳(メタデータ) (2021-07-14T15:11:05Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。