Do We Really Need to Use Constraint Violation in Constrained
Evolutionary Multi-Objective Optimization?
- URL: http://arxiv.org/abs/2205.14349v1
- Date: Sat, 28 May 2022 06:29:07 GMT
- Title: Do We Really Need to Use Constraint Violation in Constrained
Evolutionary Multi-Objective Optimization?
- Authors: Shuang Li, Ke Li, Wei Li
- Abstract summary: Constraint violation has been a building block to design evolutionary multi-objective optimization algorithms.
This paper develops the corresponding variants that replace the constraint violation by a crisp value.
From our experiments on both synthetic and real-world benchmark test problems, we find that the performance of the selected algorithms have not been significantly influenced.
- Score: 13.833668582211876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constraint violation has been a building block to design evolutionary
multi-objective optimization algorithms for solving constrained multi-objective
optimization problems. However, it is not uncommon that the constraint
violation is hardly approachable in real-world black-box optimization
scenarios. It is unclear that whether the existing constrained evolutionary
multi-objective optimization algorithms, whose environmental selection
mechanism are built upon the constraint violation, can still work or not when
the formulations of the constraint functions are unknown. Bearing this
consideration in mind, this paper picks up four widely used constrained
evolutionary multi-objective optimization algorithms as the baseline and
develop the corresponding variants that replace the constraint violation by a
crisp value. From our experiments on both synthetic and real-world benchmark
test problems, we find that the performance of the selected algorithms have not
been significantly influenced when the constraint violation is not used to
guide the environmental selection.
Related papers
- Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
Constrained multi-objective optimization problems (CMOPs) pervade real-world applications in science, engineering, and design.
We present the first of its kind evolutionary optimization framework, inspired by the principles of the alternating direction method of multipliers that decouples objective and constraint functions.
Our framework tackles CMOPs with unknown constraints by reformulating the original problem into an additive form of two subproblems, each of which is allotted a dedicated evolutionary population.
arXiv Detail & Related papers (2024-01-02T00:38:20Z) - Adaptive Decision-Making with Constraints and Dependent Losses:
Performance Guarantees and Applications to Online and Nonlinear
Identification [5.787117733071415]
We consider adaptive decision-making problems where an agent optimize a cumulative performance objective by repeatedly choosing among a finite set of options.
Our algorithm and our analysis is instance dependent, that is, suboptimal choices of the environment are exploited and reflected in our regret bounds.
The performance of the resulting algorithms is highlighted in two numerical examples.
arXiv Detail & Related papers (2023-04-06T18:32:26Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Robust Constrained Multi-objective Evolutionary Algorithm based on
Polynomial Chaos Expansion for Trajectory Optimization [0.0]
The proposed method rewrites a robust formulation into a deterministic problem via the PCE.
As a case study, the landing trajectory design of supersonic transport (SST) with wind uncertainty is optimized.
arXiv Detail & Related papers (2022-05-23T15:33:05Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
Finding the optimal process parameters for an adhesive bonding process is challenging.
Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem.
In this research, we successfully applied specific machine learning techniques to emulate the objective and constraint functions.
arXiv Detail & Related papers (2021-12-16T10:14:39Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Uncertainty aware Search Framework for Multi-Objective Bayesian
Optimization with Constraints [44.25245545568633]
We consider the problem of constrained multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel framework named Uncertainty-aware Search framework for Multi-Objective Optimization with Constraints.
We show that USeMOC is able to achieve more than 90 % reduction in the number of simulations needed to uncover optimized circuits.
arXiv Detail & Related papers (2020-08-16T23:34:09Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.