論文の概要: Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation
- arxiv url: http://arxiv.org/abs/2205.14428v1
- Date: Sat, 28 May 2022 13:18:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 16:53:27.877618
- Title: Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation
- Title(参考訳): 複数のインスタンスニューラルネットワークを越える:局所パターン集約に基づくディープラーニングモデル
- Authors: Linpeng Jin
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、臨床心電図(ECG)と話者非依存音声の処理においてブレークスルーをもたらした。
本稿では,局所的なパターン集約に基づくディープラーニングモデルを提案する。
LPANetと呼ばれる新しいネットワーク構造には、トリミングと集約操作が組み込まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks (CNNs) have brought breakthroughs in
processing clinical electrocardiograms (ECGs), speaker-independent speech and
complex images. However, typical CNNs require a fixed input size while it is
common to process variable-size data in practical use. Recurrent networks such
as long short-term memory (LSTM) are capable of eliminating the restriction,
but suffer from high computational complexity. In this paper, we propose local
pattern aggregation-based deep-learning models to effectively deal with both
problems. The novel network structure, called LPANet, has cropping and
aggregation operations embedded into it. With these new features, LPANet can
reduce the difficulty of tuning model parameters and thus tend to improve
generalization performance. To demonstrate the effectiveness, we applied it to
the problem of premature ventricular contraction detection and the experimental
results shows that our proposed method has certain advantages compared to
classical network models, such as CNN and LSTM.
- Abstract(参考訳): 深部畳み込みニューラルネットワーク(CNN)は、臨床心電図(ECG)、話者非依存の音声、複雑な画像の処理にブレークスルーをもたらした。
しかし、典型的なCNNは固定された入力サイズを必要とするが、実際は可変サイズのデータを処理するのが一般的である。
長い短期記憶(LSTM)のようなリカレントネットワークは制限を排除できるが、計算の複雑さに悩まされている。
本稿では,これらの問題を効果的に扱うために,局所的なパターン集約に基づくディープラーニングモデルを提案する。
LPANetと呼ばれる新しいネットワーク構造には、トリミングと集約操作が組み込まれている。
これらの新機能により、LPANetはモデルパラメータのチューニングの難しさを低減し、一般化性能を向上させる傾向がある。
本手法の有効性を実証するため, 早期心室収縮検出問題に適用し, 実験結果から, CNN や LSTM などの古典的ネットワークモデルと比較して, 提案手法が一定の優位性を示した。
関連論文リスト
- Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
非構造データを用いた高忠実度予測のための局所収束入力(NNLCI)を用いたニューラルネットワークを開発した。
また, NNLCI法を用いて, バンプを有するチャネル内の超音速流の可視化を行った。
論文 参考訳(メタデータ) (2023-10-23T19:03:37Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - A critical look at deep neural network for dynamic system modeling [0.0]
本稿では,入力出力データを用いた動的システムのモデリングにおける(深度)ニューラルネットワークの能力に疑問を呈する。
線形時間不変(LTI)力学系の同定には、2つの代表的なニューラルネットワークモデルを比較する。
LTIシステムでは、LSTMとCFNNはノイズのないケースでも一貫したモデルを提供できない。
論文 参考訳(メタデータ) (2023-01-27T09:03:05Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM)モデルは、多くの最先端自然言語処理(NLP)と音声強調(SE)アルゴリズムの構築ブロックである。
ここでは、量子多体物理学における量子状態の局所的相関を記述するMPO分解を紹介する。
LSTMモデルを置き換えるために,行列積演算子(MPO)に基づくニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-22T11:50:06Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。