End-to-End Topology-Aware Machine Learning for Power System Reliability
Assessment
- URL: http://arxiv.org/abs/2205.14792v1
- Date: Mon, 30 May 2022 00:00:14 GMT
- Title: End-to-End Topology-Aware Machine Learning for Power System Reliability
Assessment
- Authors: Yongli Zhu, Chanan Singh
- Abstract summary: This paper proposes a preliminary investigation on end-to-end machine learning for directly predicting the reliability index.
Two models (Support Vector Machine and Boosting Trees) are trained and compared.
Results demonstrate the applicability of the proposed end-to-end machine learning pipeline in reliability assessment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional power system reliability suffers from the long run time of Monte
Carlo simulation and the dimension-curse of analytic enumeration methods. This
paper proposes a preliminary investigation on end-to-end machine learning for
directly predicting the reliability index, e.g., the Loss of Load Probability
(LOLP). By encoding the system admittance matrix into the input feature, the
proposed machine learning pipeline can consider the impact of specific topology
changes due to regular maintenances of transmission lines. Two models (Support
Vector Machine and Boosting Trees) are trained and compared. Details regarding
the training data creation and preprocessing are also discussed. Finally,
experiments are conducted on the IEEE RTS-79 system. Results demonstrate the
applicability of the proposed end-to-end machine learning pipeline in
reliability assessment.
Related papers
- The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
Condition-Based Maintenance is pivotal in enabling the early detection of potential failures in engineering systems.
We introduce a novel methodology grounded in the analysis of statistical similarity within latent data from system components.
We infer the similarity between systems by evaluating the divergence of these priors, offering a nuanced understanding of individual system behaviors.
arXiv Detail & Related papers (2024-06-13T11:41:20Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - Comprehensive Study Of Predictive Maintenance In Industries Using Classification Models And LSTM Model [0.0]
The study aims to delve into various machine learning classification techniques, including Support Vector Machine (SVM), Random Forest, Logistic Regression, and Convolutional Neural Network LSTM-Based, for predicting and analyzing machine performance.
The primary objective of the study is to assess these algorithms' performance in predicting and analyzing machine performance, considering factors such as accuracy, precision, recall, and F1 score.
arXiv Detail & Related papers (2024-03-15T12:47:45Z) - A hybrid feature learning approach based on convolutional kernels for
ATM fault prediction using event-log data [5.859431341476405]
We present a predictive model based on a convolutional kernel (MiniROCKET and HYDRA) to extract features from event-log data.
The proposed methodology is applied to a significant real-world collected dataset.
The model was integrated into a container-based decision support system to support operators in the timely maintenance of ATMs.
arXiv Detail & Related papers (2023-05-17T08:55:53Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Transformers for prompt-level EMA non-response prediction [62.41658786277712]
Ecological Momentary Assessments (EMAs) are an important psychological data source for measuring cognitive states, affect, behavior, and environmental factors.
Non-response, in which participants fail to respond to EMA prompts, is an endemic problem.
The ability to accurately predict non-response could be utilized to improve EMA delivery and develop compliance interventions.
arXiv Detail & Related papers (2021-11-01T18:38:47Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Manifold for Machine Learning Assurance [9.594432031144716]
We propose an analogous approach for machine-learning (ML) systems using an ML technique that extracts from the high-dimensional training data implicitly describing the required system.
It is then harnessed for a range of quality assurance tasks such as test adequacy measurement, test input generation, and runtime monitoring of the target ML system.
Preliminary experiments establish that the proposed manifold-based approach, for test adequacy drives diversity in test data, for test generation yields fault-revealing yet realistic test cases, and for runtime monitoring provides an independent means to assess trustability of the target system's output.
arXiv Detail & Related papers (2020-02-08T11:39:01Z) - Assurance Monitoring of Cyber-Physical Systems with Machine Learning
Components [2.1320960069210484]
We investigate how to use the conformal prediction framework for assurance monitoring of Cyber-Physical Systems.
In order to handle high-dimensional inputs in real-time, we compute nonconformity scores using embedding representations of the learned models.
By leveraging conformal prediction, the approach provides well-calibrated confidence and can allow monitoring that ensures a bounded small error rate.
arXiv Detail & Related papers (2020-01-14T19:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.