論文の概要: Metrizing Fairness
- arxiv url: http://arxiv.org/abs/2205.15049v5
- Date: Tue, 11 Jun 2024 09:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 01:37:54.457622
- Title: Metrizing Fairness
- Title(参考訳): メトリジングフェアネス
- Authors: Yves Rychener, Bahar Taskesen, Daniel Kuhn,
- Abstract要約: 本研究では,2つの集団集団の個人に有意な影響を及ぼす教師付き学習問題について検討した。
我々は、統計パリティ(SP)のような群フェアネス基準に関して公正な予測子を求める。
本稿では,厳密なSP制約が保証される条件を特定し,予測精度を向上させる。
- 参考スコア(独自算出の注目度): 5.323439381187456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study supervised learning problems that have significant effects on individuals from two demographic groups, and we seek predictors that are fair with respect to a group fairness criterion such as statistical parity (SP). A predictor is SP-fair if the distributions of predictions within the two groups are close in Kolmogorov distance, and fairness is achieved by penalizing the dissimilarity of these two distributions in the objective function of the learning problem. In this paper, we identify conditions under which hard SP constraints are guaranteed to improve predictive accuracy. We also showcase conceptual and computational benefits of measuring unfairness with integral probability metrics (IPMs) other than the Kolmogorov distance. Conceptually, we show that the generator of any IPM can be interpreted as a family of utility functions and that unfairness with respect to this IPM arises if individuals in the two demographic groups have diverging expected utilities. We also prove that the unfairness-regularized prediction loss admits unbiased gradient estimators, which are constructed from random mini-batches of training samples, if unfairness is measured by the squared $\mathcal L^2$-distance or by a squared maximum mean discrepancy. In this case, the fair learning problem is susceptible to efficient stochastic gradient descent (SGD) algorithms. Numerical experiments on synthetic and real data show that these SGD algorithms outperform state-of-the-art methods for fair learning in that they achieve superior accuracy-unfairness trade-offs -- sometimes orders of magnitude faster.
- Abstract(参考訳): 本研究では,2つの人口集団の個人に有意な影響を及ぼす教師付き学習問題について検討し,統計パリティ(SP)などのグループフェアネス基準に対して公平な予測因子を求める。
予測器は2つの群内の予測分布がコルモゴロフ距離に近ければSPフェアであり、学習問題の目的関数においてこれらの2つの分布の相似性をペナルティ化することにより公平性を達成する。
本稿では,厳密なSP制約が保証される条件を特定し,予測精度を向上させる。
また、コルモゴロフ距離以外の積分確率測度(IPMs)を用いて不公平さを測定するという概念的および計算的利点を示す。
概念的には、どのIMMのジェネレータもユーティリティ関数のファミリーとして解釈でき、このIMMに関する不公平さは、2つの人口集団の個人が期待されるユーティリティを分散させた場合に生じます。
また,不公平性正規化予測損失は,正方形$\mathcal L^2$-distance,あるいは正方形最大平均誤差によって測定された場合,トレーニングサンプルのランダムなミニバッチから構成される非バイアス勾配推定器を許容することを示した。
この場合、フェアラーニング問題は、効率的な確率勾配勾配(SGD)アルゴリズムに影響を受けやすい。
合成データと実データに関する数値実験により、これらのSGDアルゴリズムは、公正な学習のための最先端の手法よりも優れた精度と不公平なトレードオフを達成できることが示される。
関連論文リスト
- On the Maximal Local Disparity of Fairness-Aware Classifiers [35.98015221840018]
種々の予測近傍(MCDP)に沿った最大累積比差という新しい公正度尺度を提案する。
MCDPを精度よく効率的に計算するために,推定誤差の少ない計算複雑性を大幅に低減する,証明可能な精度と近似計算アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-06-05T13:35:48Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
我々は、予測の不確実性の下で公正な機械学習(ML)を研究し、信頼性と信頼性のある意思決定を可能にする。
本研究は,(1)類似した結果の異なる集団に対するカバー率が近いこと,(2)人口全体のカバー率が一定水準にあること,の2つの特性を達成することを目的としたカバーの平等機会(EOC)を提案する。
論文 参考訳(メタデータ) (2023-11-03T21:19:59Z) - Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data [6.596656267996196]
フェア・ミックスド・エフェクト・ディープ・ラーニング(Fair MEDL)フレームワークを紹介する。
Fair MEDLは、クラスタ不変固定効果(FE)とクラスタ固有ランダム効果(RE)を定量化する
敵の偏見を取り入れて、平等化オッド、デモグラフィックパリティ、カウンターファクトフェアネスの3つの主要な指標の公平性を促進する。
論文 参考訳(メタデータ) (2023-10-04T20:18:45Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
本稿では,予測性能の異なる相補的な側面に焦点をあてた診断グラフィックのトリチチを提案し,研究する。
信頼性図は校正に対処し、受信動作特性(ROC)曲線は識別能力を診断し、マーフィー図は全体的な予測性能と価値を視覚化する。
論文 参考訳(メタデータ) (2023-01-25T19:35:23Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
論文 参考訳(メタデータ) (2020-06-12T16:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。