論文の概要: PolypConnect: Image inpainting for generating realistic gastrointestinal
tract images with polyps
- arxiv url: http://arxiv.org/abs/2205.15413v1
- Date: Mon, 30 May 2022 20:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 08:29:46.911257
- Title: PolypConnect: Image inpainting for generating realistic gastrointestinal
tract images with polyps
- Title(参考訳): PolypConnect:ポリプを用いた消化管画像作成のためのイメージインペインティング
- Authors: Jan Andre Fagereng, Vajira Thambawita, Andrea M. Stor{\aa}s, Sravanthi
Parasa, Thomas de Lange, P{\aa}l Halvorsen, Michael A. Riegler
- Abstract要約: 下部消化管(GI)におけるポリープの早期同定は,致死性大腸癌の予防につながる可能性がある。
ポリープを検出するCADシステムは、検出精度と効率を改善し、エンドスコピストと呼ばれるドメインの専門家の時間を節約することができる。
本稿では,非ポリプ画像からポリプ画像に変換することにより,トレーニング用データセットのサイズを拡大するPolypConnectパイプラインを提案する。
- 参考スコア(独自算出の注目度): 1.7915968197912802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early identification of a polyp in the lower gastrointestinal (GI) tract can
lead to prevention of life-threatening colorectal cancer. Developing
computer-aided diagnosis (CAD) systems to detect polyps can improve detection
accuracy and efficiency and save the time of the domain experts called
endoscopists. Lack of annotated data is a common challenge when building CAD
systems. Generating synthetic medical data is an active research area to
overcome the problem of having relatively few true positive cases in the
medical domain. To be able to efficiently train machine learning (ML) models,
which are the core of CAD systems, a considerable amount of data should be
used. In this respect, we propose the PolypConnect pipeline, which can convert
non-polyp images into polyp images to increase the size of training datasets
for training. We present the whole pipeline with quantitative and qualitative
evaluations involving endoscopists. The polyp segmentation model trained using
synthetic data, and real data shows a 5.1% improvement of mean intersection
over union (mIOU), compared to the model trained only using real data. The
codes of all the experiments are available on GitHub to reproduce the results.
- Abstract(参考訳): 下部消化管(gi)におけるポリープの早期同定は,大腸癌の予防につながる可能性がある。
ポリープを検出するコンピュータ支援診断(cad)システムの開発は、検出精度と効率を改善し、ドメインの専門家であるendoscopistsの時間を節約する。
注釈付きデータの欠如はcadシステム構築において一般的な課題である。
合成医療データの生成は、医療領域内での正のケースが比較的少ないという問題を克服するための活発な研究領域である。
CADシステムの中核である機械学習(ML)モデルを効率的に訓練するには、かなりの量のデータを使用する必要がある。
本稿では,非ポリプ画像からポリプ画像に変換することにより,トレーニング用データセットのサイズを拡大するPolypConnectパイプラインを提案する。
内科医を含む定量的,定性的な評価をパイプライン全体に提示する。
合成データを用いてトレーニングしたポリプセグメンテーションモデルと、実データのみを用いてトレーニングしたモデルと比較すると、平均交叉率(mIOU)が5.1%向上した。
すべての実験のコードは、結果を再現するためにgithubで入手できる。
関連論文リスト
- Polyp-Gen: Realistic and Diverse Polyp Image Generation for Endoscopic Dataset Expansion [35.74618077230043]
本稿では,最初のフルオートマチック拡散に基づく内視鏡画像生成フレームワークであるPolyp-Genを紹介する。
具体的には、ポリープ境界領域の構造的文脈を高めるために、病変誘導損失を伴う空間認識拡散訓練手法を考案する。
ポリープ領域の局所化に先立つ医学的先行を捉えるために,階層的検索に基づくサンプリング戦略を導入する。
論文 参考訳(メタデータ) (2025-01-28T03:25:37Z) - Polyp-E: Benchmarking the Robustness of Deep Segmentation Models via Polyp Editing [32.30835026874521]
日常的な臨床実践では、臨床医は位置と大きさのばらつきの両方でポリープを識別する堅牢性を示す。
自動大腸内視鏡検査において,深部分割モデルが同等の堅牢性を達成できるかどうかは不明である。
本研究は,ポリプ上でのセグメンテーションモデルのロバスト性について,様々な属性と健全なサンプルを用いて評価することに焦点を当てる。
論文 参考訳(メタデータ) (2024-10-22T06:30:37Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
既存の手法では、計算コストのかかるコンテキストアグリゲーションが伴うか、ポリープの事前モデリングが欠如しているため、難解なケースでは性能が低下する。
本稿では,2段階のトレーニングとエンドツーエンド推論フレームワークである Enhanced CenterNet with Contrastive Learning (ECC-PolypDet) を提案する。
Box-assisted Contrastive Learning (BCL) は, クラス内差を最小限に抑え, 前庭ポリープと背景のクラス間差を最大化するため, 隠れポリープを捕捉する。
微調整段階におけるIoU誘導サンプル再重み付けの導入
論文 参考訳(メタデータ) (2024-01-10T07:03:41Z) - Mask-conditioned latent diffusion for generating gastrointestinal polyp
images [2.027538200191349]
本研究では,与えられたセグメンテーションマスクに条件付き合成GIポリプ画像を生成する条件付きDPMフレームワークを提案する。
本システムでは,ポリプの接地真実マスクを用いて,無限個の高忠実度合成ポリプ画像を生成することができる。
以上の結果から,実データと合成データの両方からなるトレーニングデータから,DeepLabv3+から0.7751の最適マイクロイモージョンIOUが得られた。
論文 参考訳(メタデータ) (2023-04-11T14:11:17Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
ポリープセグメンテーションのための障害対応動的ネットワーク(LDNet)を提案する。
従来のU字型エンコーダ・デコーダ構造であり、動的カーネル生成と更新スキームが組み込まれている。
この単純だが効果的なスキームは、我々のモデルに強力なセグメンテーション性能と一般化能力を与える。
論文 参考訳(メタデータ) (2023-01-12T09:53:57Z) - Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution
Network [3.1374864575817214]
本研究では,自動ポリープセグメンテーションのための新しいディープラーニングアーキテクチャ,textbfMKDCNetを提案する。
4つの公開ポリプデータセットと細胞核データセットの実験は、提案されたMKDCNetが最先端の手法より優れていることを示している。
MKDCNetは、臨床大腸内視鏡のためのリアルタイムシステムを構築するための強力なベンチマークとなる。
論文 参考訳(メタデータ) (2022-06-13T15:47:38Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
大腸ポリープの発達は、がんの最も初期の兆候の1つである。
ポリープの早期検出と切除は生存率を90%に大きく向上させる。
大腸内視鏡画像の処理によりポリープを検出するコンピュータ支援診断システム(CADx)が提案されている。
論文 参考訳(メタデータ) (2021-10-17T09:31:20Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。