論文の概要: Lessons Learned from Data-Driven Building Control Experiments:
Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2205.15703v1
- Date: Tue, 31 May 2022 11:40:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 15:35:24.247063
- Title: Lessons Learned from Data-Driven Building Control Experiments:
Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement
Learning
- Title(参考訳): データ駆動型ビルディングコントロール実験から学んだ教訓:ガウス的プロセスベースのMPC、双方向DeePC、深層強化学習
- Authors: Loris Di Natale, Yingzhao Lian, Emilio T. Maddalena, Jicheng Shi and
Colin N. Jones
- Abstract要約: この写本は、多くの近代的なデータ駆動技術に関する実験主義者の視点を提供する。
データ要件、使いやすさ、計算負担、実世界のアプリケーションのコンテキストにおける堅牢性の観点から比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This manuscript offers the perspective of experimentalists on a number of
modern data-driven techniques: model predictive control relying on Gaussian
processes, adaptive data-driven control based on behavioral theory, and deep
reinforcement learning. These techniques are compared in terms of data
requirements, ease of use, computational burden, and robustness in the context
of real-world applications. Our remarks and observations stem from a number of
experimental investigations carried out in the field of building control in
diverse environments, from lecture halls and apartment spaces to a hospital
surgery center. The final goal is to support others in identifying what
technique is best suited to tackle their own problems.
- Abstract(参考訳): この写本は、ガウス過程に依存するモデル予測制御、行動理論に基づく適応型データ駆動制御、深層強化学習など、現代のデータ駆動技術に関する実験者の視点を提供する。
これらの技術は、データ要件、使いやすさ、計算負荷、実世界のアプリケーションにおける堅牢性の観点から比較される。
講演室やマンションから病院の手術センターまで,様々な環境における建築管理の分野で実施された多くの実験結果から,留意点と考察が得られた。
最後のゴールは、他の人が自分の問題に取り組むのに最適なテクニックを特定するのを支援することです。
関連論文リスト
- UDA-Bench: Revisiting Common Assumptions in Unsupervised Domain Adaptation Using a Standardized Framework [59.428668614618914]
現代無監督領域適応法(UDA)の有効性に影響を及ぼす様々な要因について, より深く考察する。
分析を容易にするため,ドメイン適応のためのトレーニングと評価を標準化する新しいPyTorchフレームワークであるUDA-Benchを開発した。
論文 参考訳(メタデータ) (2024-09-23T17:57:07Z) - Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
ビデオ異常検出(VAD)は、ビデオの正常性から逸脱する行動や事象を発見することを目的としている。
ディープラーニングの時代には、VADタスクには、さまざまなディープラーニングベースの方法が常に現れています。
このレビューでは、半教師付き、弱教師付き、完全教師付き、非教師付き、オープンセットの5つのカテゴリのスペクトルについて取り上げる。
論文 参考訳(メタデータ) (2024-09-09T07:31:16Z) - A Review of Machine Learning Techniques in Imbalanced Data and Future
Trends [0.0]
我々は,学術雑誌や会議論文から258件の査読論文を収集し,レビューした。
本研究の目的は、様々な領域における不均衡データの問題に対処するために用いられる手法の構造化されたレビューを提供することである。
論文 参考訳(メタデータ) (2023-10-11T22:14:17Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
本稿では,インストラクションチューニング(IT)の急速な発展分野における研究成果について調査する。
本稿では、指定しない場合を除き、命令チューニング(IT)は教師付き微調整(SFT)と等価である。
論文 参考訳(メタデータ) (2023-08-21T15:35:16Z) - Pitfalls in Experiments with DNN4SE: An Analysis of the State of the
Practice [0.7614628596146599]
我々は、ソフトウェアエンジニアリングのプレミア会場で発行された55の論文に現れるディープニューラルネットワークに依存する技術を用いて、194の実験を行い、マッピング研究を実施します。
以上の結果から,ACMアーティファクトバッジを受信した者を含む実験の大部分が,その信頼性に疑問を呈する根本的な限界があることが判明した。
論文 参考訳(メタデータ) (2023-05-19T09:55:48Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
本稿では,高時間差(TD)誤差が深部RLアルゴリズムの性能に悪影響を及ぼす主要な原因であることを示す。
検証TDエラーをターゲットとした簡単なオンラインモデル選択法は,状態ベースDMCおよびGymタスク間で有効であることを示す。
論文 参考訳(メタデータ) (2023-04-20T17:11:05Z) - Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control [22.549914935697366]
カーネル埋め込みを用いたデータ駆動制御アルゴリズムに事前知識を組み込む手法を提案する。
提案手法は,カーネル学習問題におけるバイアス項として,システムダイナミクスの事前知識を取り入れたものである。
純粋にデータ駆動ベースライン上でのサンプル効率の向上と,我々のアプローチのアウト・オブ・サンプル一般化を実証する。
論文 参考訳(メタデータ) (2023-01-09T18:35:32Z) - Context-aware controller inference for stabilizing dynamical systems
from scarce data [0.0]
本研究は,データ不足から高次元力学系を安定化するためのデータ駆動制御手法を導入する。
提案手法は, 制御系を安定化させるためには, 制御系が不安定な力学のみにのみ局所的に作用する必要があるという観測に基づいている。
論文 参考訳(メタデータ) (2022-07-22T12:41:53Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Data and its (dis)contents: A survey of dataset development and use in
machine learning research [11.042648980854487]
機械学習におけるデータの収集と利用方法に関する多くの懸念を調査します。
この分野の実践的かつ倫理的な問題のいくつかに対処するには、データのより慎重で徹底した理解が必要であると主張する。
論文 参考訳(メタデータ) (2020-12-09T22:13:13Z) - Monitoring and explainability of models in production [58.720142291102135]
デプロイされたモデルを監視することは、高品質の機械学習対応サービスの継続的なプロビジョニングに不可欠である。
これらの領域でソリューションの実装を成功させる上での課題を,オープンソースツールを使用した本番環境対応ソリューションの最近の例で論じる。
論文 参考訳(メタデータ) (2020-07-13T10:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。